The role of third-body collision efficiency in autoignition of hydrogen–air mixtures
- Authors: Tereza A.M.1, Agafonov G.L.1, Anderzhanov E.K.1, Betev A.S.1, Medvedev S.P.1, Mikhalkin V.N.1,2, Khomik S.V.1, Cherepanova T.T.1
-
Affiliations:
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
- Academy of State Fire Service of EMERCOM of Russia
- Issue: Vol 43, No 7 (2024)
- Pages: 73-82
- Section: Combustion, explosion and shock waves
- URL: https://cardiosomatics.orscience.ru/0207-401X/article/view/674926
- DOI: https://doi.org/10.31857/S0207401X24070071
- ID: 674926
Cite item
Abstract
Numerical simulations of autoignition of lean (6% H2), stoichiometric, and rich (90% H2) hydrogen–air mixtures have been performed to examine the influence of third-body efficiency (chaperon efficiency, CE) on the value of ignition delay, τ. The temperature ranges explored in the computations are 850–1000 K for P0 = 1 bar and 1000–1200 K for P0 = 6 bar. By using a detailed kinetic mechanism, it has been found that the sensitivity of ignition delay to CE is the highest for the reaction step H + O2 + M = HO2 + M, which can lead to a variation in τ by a factor of 2 to 3. A pressure increase or deviation from stoichiometry reduces the sensitivity. The influence of CE is qualitatively different and weaker for the reaction step OH + OH + M = H2O2 + M.
Full Text

About the authors
A. M. Tereza
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Author for correspondence.
Email: tereza@chph.ras.ru
Russian Federation, Moscow
G. L. Agafonov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: tereza@chph.ras.ru
Russian Federation, Moscow
E. K. Anderzhanov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: tereza@chph.ras.ru
Russian Federation, Moscow
A. S. Betev
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: tereza@chph.ras.ru
Russian Federation, Moscow
S. P. Medvedev
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: tereza@chph.ras.ru
Russian Federation, Moscow
V. N. Mikhalkin
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences; Academy of State Fire Service of EMERCOM of Russia
Email: tereza@chph.ras.ru
Russian Federation, Moscow; Moscow
S. V. Khomik
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: tereza@chph.ras.ru
Russian Federation, Moscow
T. T. Cherepanova
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: tereza@chph.ras.ru
Russian Federation, Moscow
References
- S. Yakovenko, I. S. Medvedkov, and A. D. Kiverin, Russ. J. Phys. Chem. B 16, 294 (2022). https://doi.org/10.1134/S1990793122020142
- Yakovenko, and A. Kiverin, Fire 6, 239 (2023). https://doi.org/10.3390/fire6060239
- A. D. Kiverin, I. S. Medvedkov, and I. S. Yakovenko, Russ. J. Phys. Chem. B 16, 1075 (2022). https://doi.org/10.1134/S1990793122060057
- V. F. Nikitin, E. V. Mikhalchenko, L. I. Stamov, V. V. Tyurenkova, and N. N. Smirnov, Acta Astronautica 213, 156 (2023). https://doi.org/10.1016/j.actaastro.2023.08.036
- N. N. Smirnov, V. V. Azatyan, V. F. Nikitin et al., Intern. J. Hydrogen Energy B 49, 1315 (2024). https://doi.org/10.1016/j.ijhydene.2023.11.085
- N. N. Smirnov, V. F. Nikitin, E. V. Mikhalchenko, L. I. Stamov, V. V. Tyurenkova, Intern. J. Hydrogen Energy B 49, 495 (2024). https://doi.org/10.1016/j.ijhydene.2023.08.184
- P. Saxena, and F. A. Williams, Combust. Flame 145, 316 (2006). https://doi.org/10.1016/j.combustflame.2005.10.004
- A. A. Konnov, Combust. Flame 152 (4), 507 (2008). https://doi.org/10.1016/j.combustflame.2007.10.024
- Z. Hong, D. F. Davidson, and R. K. Hanson, Combust. Flame 158 (4), 633 (2011). https://doi.org/10.1016/j.combustflame.2010.10.002
- A. Keromnes, W.K. Metcalfe, K.A. Heufer et al., Combust. Flame 160, 995 (2013). https://doi.org/10.1016/j.combustflame.2013.01.001
- A. Schönborn, P. Sayad, A.A. Konnov, and J. Klingmann J., Intern. J. Hydrogen Energy 39 (23), 12166 (2014). https://doi.org/10.1016/j.ijhydene.2014.05.157
- H. Hashemi, J. M. Christensen, S. Gersen, and P. Glarborg, Proc. Combust. Inst. 35, 553 (2015). http://dx.doi.org/10.1016/j.proci.2014.05.101
- G. P. Smith, Y. Tao, and H. Wang, Foundational Fuel Chemistry Model Version 1.0 (FFCM-1) (2016). https://web.stanford.edu/group/haiwanglab/FFCM1/pages/download.html
- P. A. Vlasov, V. N. Smirnov, and A. M. Tereza, Russ. J. Phys. Chem. B 10 (3), 456 (2016). https://doi.org/10.1134/S1990793116030283
- S. Jin, B. Shu, X. He, R. Fernandes, and L. Li, Fuel 303, 121291 (2021). https://doi.org/10.1016/j.fuel.2021.121291
- Y. Zhang, J. Fu, M. Xie, and J. Liu, Intern. J. Hydrogen Energy, 46 (7) 5799 (2021). https://doi.org/10.1016/j.ijhydene.2020.11.083
- A. M. Tereza, G. L. Agafonov, E. K. Anderzhanov, et al., Russ. J. Phys. Chem. B 16, 686 (2022). https://doi.org/10.1134/S1990793122040297
- C. Olm, I. G. Zsély, R. Pálvölgyi, et al., Combust. Flame 161 (9), 2219 (2014). http://dx.doi.org/10.1016/j.combustflame.2014.03.006
- A.A. Konnov, Combust. Flame 203, 14 (2019). https://doi.org/10.1016/j.combustflame.2019.01.032
- T. Weydahl, M. Poyyapakkam, M. Seljeskog, and N.E.L. Haugen, Intern. J. Hydrogen Energy 36 (18), 12025 (2011). https://doi.org/10.1016/j.ijhydene.2011.06.063
- O. V. Skrebkov, S. S. Kostenko, and A. L. Smirnov, Intern. J. Hydrogen Energy 45, 3251 (2020). https://doi.org/10.1016/j.ijhydene.2019.11.168
- N.M. Kuznetsov, The Kinetics of Monomolecular Reactions (Nauka, Moscow 1982) [in Russian]
- D. L. Baulch, C. T. Bowman, C. J. Cobos, et al., J. Phys. Chem. Ref. Data 34 (3), 757 (2005). https://doi.org/10.1063/1.1748524
- A. L. Sánchez, and F. A. Williams, Progr. Energy Combust. Sci. 41, 1 (2014). http://dx.doi.org/10.1016/j.pecs.2013.10.002
- A. M. Tereza, G. L. Agafonov, E. K. Anderzhanov, et al., Russ. J. Phys. Chem. B 17 (2), 425 (2023). https://doi.org/10.1134/S1990793123020173
- E. Ranzi, A. Frassoldati, R. Grana, et al., Progr. Energy Combust. Sci. 38 (4), 468 (2012). https://doi.org/10.1016/j.pecs.2012.03.004
- P. A. Vlasov, N. M. Kusnetsov, Y. P. Petrov and S. V. Turetskii, Proc. 24th ICDERS, Paper 153 (2013). http://www.icders.org/ICDERS2013/abstracts/ICDERS2013-0153.pdf
- CHEMKIN-Pro, Reaction Design, San Diego, 15112. CK-TUT-10112-1112-UG-1, 2011.
- J. Grune, K. Sempert, H. Haberstroh, M. Kuznetsov, and T. Jordan, J. Loss Prevent. Proc. Industries 26, 317 (2013). http://dx.doi.org/10.1016/j.jlp.2013.09.008
Supplementary files
