Population growth of microalga Tisochrysis lutea (Haptophyta) and the content of carotenoids and neutral lipids at the different illuminations in a panel bioreactor
- Autores: Маrkina Z.V.1, Zinov A.A.1
-
Afiliações:
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences
- Edição: Volume 51, Nº 1 (2025)
- Páginas: 20-27
- Seção: ОРИГИНАЛЬНЫЕ СТАТЬИ
- ##submission.datePublished##: 10.05.2025
- URL: https://cardiosomatics.orscience.ru/0134-3475/article/view/682780
- DOI: https://doi.org/10.31857/S0134347525010025
- ID: 682780
Citar
Resumo
The effect of illumination (10, 30, 50, and 70 μmol/m2/s) on microalga Tisochrysis lutea (Haptophyta) in a 1.8 L panel bioreactor was studied using a 5 Lux–LED flat panel (Infors HT, Switzerland) for 14 days. It was found that the most intensive growth of microalga occurred at 30 and 50 μmol/m²/s. At 10 μmol/m²/s, population growth was completely suppressed. Regardless of the light intensity, cells larger than 4 μm predominated in the algae population after seven days. The carotenoid content at illuminations of 10 and 70 μmol/m²/s was highest on the seventh day. The chlorophyll a to carotenoid ratio decreased by the end of the experiment in all conditions. The highest amount of neutral lipids in cells was noted at 10 μmol/m²/s.
Palavras-chave
Texto integral

Sobre autores
Zh. Маrkina
A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences
Autor responsável pela correspondência
Email: zhannav@mail.ru
ORCID ID: 0000-0001-7135-1375
Rússia, Vladivostok 690041
A. Zinov
A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences
Email: zhannav@mail.ru
ORCID ID: 0000-0003-4705-5941
Rússia, Vladivostok 690041
Bibliografia
- Соловченко А.Е. Физиологическая роль накопления нейтральных липидов эукариотическими микроводорослями при стрессах // Физиол. Раст. 2012. Т. 59. № 2. С. 192–202.
- Alemán-Nava G.S., Cuellar-Bermudez S.P., Cuaresma M. et al. How to use Nile Red, a selective fluorescent stain for microalgal neutral lipids // J. Microbiol. Methods. 2016. V. 128. P. 74–79.
- Alkhamis Y., Qin J.G. Comparison of pigment and proximate compositions of Tisochrysis lutea in phototrophic and mixotrophic cultures // J. Аppl. Phycol. 2016. V. 28. P. 35–42.
- Beuzenberg V., Goodwin E.O., Puddick J. et al. Optimising conditions for growth and xanthophyll production in continuous culture of Tisochrysis lutea using photobioreactor arrays and central composite design experiments // N. Z. J. Bot. 2017. V. 55. P. 64–78.
- Bigagli E., Cinci L., Niccolai A. et al. Preliminary data on the dietary safety, tolerability and effects on lipid metabolism of the marine microalga Tisochrysis lutea // Algal Res. 2018. V. 34. P. 244–249.
- Borowitzka M.A. Algal physiology and large-scale outdoor cultures of microalgae // The physiology of microalgae / Eds. M. Borowitzka, J. Beardall, J. Raven. Cham, Switzerland: Springer, 2016. P. 601–654. (Dev. Appl. Phycol.; V. 6).
- Chin G.J.W.L., Andrew A.R., Abdul-Sani E.R. et al. The effects of light intensity and nitrogen concentration to enhance lipid production in four tropical microalgae // Biocatal. Agric. Biotechnol. 2023. V. 48. Art. ID 102660.
- Chowdury K.H., Nahar N., Deb U.K. The growth factors involved in microalgae cultivation for biofuel production: a review // Comput. Water, Energy, Environ. Eng. 2020. V. 9. № 4. P. 185–215.
- Cid A., Fidalgo P., Herrero C., Abalde J. Toxic action of copper on the membrane system of a marine diatom measured by flow cytometry // Cytometry. 1996. V. 25. P. 32–36.
- da Costa F., Le Grand F., Quéré C. Effects of growth phase and nitrogen limitation on biochemical composition of two strains of Tisochrysis lutea // Algal Res. 2017. V. 27. P. 177–189.
- Delbrut A., Albina P., Lapierre T. et al. Fucoxanthin and polyunsaturated fatty acids co-extraction by a green process // Molecules. 2018. V. 23. Art. ID 874.
- Gao F., Teles (Cabanelas ITD) I., Ferrer-Ledo N. et al. Production and high throughput quantification of fucoxanthin and lipids in Tisochrysis lutea using single-cell fluorescence // Bioresour. Technol. 2020. V. 318. Art. ID 124104.
- Guedes A.C., Malcata F. Bioreactors for microalgae: a review of designs, features and applications // Bioreactors: design, properties and applications. Eds. P.G. Antolli, Z. Liu. Nova Science Publishers Inc., 2011. P. 1–52.
- Guillard R.R.L., Ryther J.H. Studies of marine planktonic diatoms. 1. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. // Can. J. Microbiol. 1962. V. 8. P. 229–239.
- Huang B., Marchand J., Thiriet-Rupert S. et al. Betaine lipid and neutral lipid production under nitrogen or phosphorus limitation in the marine microalga Tisochrysis lutea (Haptophyta) // Algal Res. 2019. V. 40. Art. ID 101506.
- Hyka P. Lickova S., Přibyl P. et al. Flow cytometry for the development of biotechnological processes with microalgae // Biotechnol. Adv. 2013. V. 31. P. 2–16.
- Iglesias M.J., Soengas R., Probert I. et al. NMR characterization and evaluation of antibacterial and antiobiofilm activity of organic extracts from stationary phase batch cultures of five marine microalgae (Dunaliella sp., D. salina, Chaetoceros calcitrans, C. gracilis and Tisochrysis lutea) // Phytochemistry. 2019. V. 164. P. 192–205.
- Ippoliti D., González A., Martín I. et al. Outdoor production of Tisochrysis lutea in pilot-scale tubular photobioreactors // J. Appl. Phycol. 2016. V. 28. P. 3159–3166.
- Jeffrey S.W., Humphrey G.F. New spectrophotometric equations for determining chlorophylls a, b c1 and c2 in higher plants, algae and natural phytoplankton // Biochem. Physiol. Planz. 1975. V. 167. P. 191–194.
- Leal E., de Beyer L., OʼConnor W. et al. Production optimisation of Tisochrysis lutea as a live feed for juvenile Sydney rock oysters, Saccostrea glomerata, using large-scale photobioreactors // Aquaculture. 2020. V. 533. Art. ID 736077.
- Lehmuskero A., Chauton M.S., Boström T. Light and photosynthetic microalgae: a review of cellular- and molecular-scale optical processes // Prog. Oceanogr. 2018. V. 168. P. 43–56.
- Liu Z., Wang G. Effect of Fe3+ on the growth and lipid content of Isochrysis galbana // Chin. J. Oceanol. Limnol. 2014. V. 32. № 1. P. 47–53.
- Maltsev Y., Maltseva K., Kulikovskiy M., Maltseva S. Influence of light conditions on microalgae growth and content of lipids, carotenoids, and fatty acid composition // Biology. 2021. V. 10. № 10. Art. ID 1060.
- Mata T.M., Martins A.A., Caetano N.S. Microalgae for biodiesel production and other applications: a review // Renewable Sustainable Energy Rev. 2010. V. 14. P. 217–232.
- Mayer C., Richard L., Côme M. et al. The marine microalga, Tisochrysis lutea, protects against metabolic disorders associated with metabolic syndrome and obesity // Nutrients. 2021. V. 13. Art. ID 430.
- Mohamadnia S., Tavakoli O., Faramarzi M.A., Shamsollahi Z. Production of fucoxanthin by the microalga Tisochrysis lutea: A review of recent developments // Aquaculture. 2020. V. 516. Art. ID 734637.
- Mulders K.J., Weesepoel Y., Lamers P.P. et al. Growth and pigment accumulation in nutrient-depleted Isochrysis aff. galbana T-ISO // J. Appl. Phycol. 2013. V. 25. P. 1421–1430.
- Pick U., Zarka A., Boussiba S., Davidi L. A hypothesis about the origin of carotenoid lipid droplets in the green algae Dunaliella and Haematococcus // Planta. 2019. V. 249. № 1. P. 31–47.
- Randhir A., Laird D.W., Maker G. et al. Microalgae: a potential sustainable commercial source of sterols // Algal Res. 2020. V. 46. Art. ID 101772.
- Rasdi N.W., Qin J.G. Effect of N: P ratio on growth and chemical composition of Nannochloropsis oculata and Tisochrysis lutea // J. Appl. Phycol. 2015. V. 27. P. 2221–2230.
- Ren Y., Sun H., Deng J. et al. Carotenoid production from microalgae: biosynthesis, salinity responses and novel biotechnologies // Mar. Drugs. 2021. V. 19. № 12. Art. ID 713.
- You Z., Zhang Q., Peng Z., Miao X. Lipid droplets mediate salt stress tolerance in Parachlorella kessleri // Plant Physiol. 2019. V. 181. № 2. P. 510–526.
Arquivos suplementares
