Реакции гидробионтов на загрязнение морской среды буровыми растворами и шламами
- Авторы: Руднева И.И.1
-
Учреждения:
- Морской гидрофизический институт РАН
- Выпуск: Том 51, № 1 (2025)
- Страницы: 3-19
- Раздел: ОБЗОР
- Статья опубликована: 10.05.2025
- URL: https://cardiosomatics.orscience.ru/0134-3475/article/view/682779
- DOI: https://doi.org/10.31857/S0134347525010012
- ID: 682779
Цитировать
Аннотация
Активное развитие нефте- и газодобычи на шельфе негативно влияет на морскую биоту, ухудшая условия существования и снижая жизнеспособность. В обзоре анализируются данные по влиянию буровых растворов и шламов, а также их компонентов на морские организмы из разных систематических групп. Обсуждается возможность использования гидробионтов для оценки экологического состояния прибрежных морских акваторий в районах интенсивной нефте- и газодобычи. Оцениваются перспективы применения природных заменителей токсичных материалов, входящих в состав буровых растворов, для снижения экологического риска.
Ключевые слова
Полный текст

Об авторах
И. И. Руднева
Морской гидрофизический институт РАН
Автор, ответственный за переписку.
Email: svg-41@mail.ru
ORCID iD: 0000-0002-9623-9467
Россия, Севастополь 299011
Список литературы
- Беловодова О.С. Кормовая база охото-корейской популяции серых китов в условиях изменения природной среды и климата // Географическая среда и живые системы. 2021. № 3. С. 22–33. https://doi.org/10.18384/2712-7621-2021-3-22-33
- Бережной К.Г., Вербицкий С.В. Основные аспекты воздействия морских платформ на окружающую среду // Тр. Крыловского гос. науч. центра. 2022. Т. 2 (400). С. 169–176. https://doi.org/10.24937/2542-2324-2022-2-400-169-176
- Горбачева Е.А. Экотоксикологические исследования донных отложений центральных и восточных районов Баренцева моря // Вестн. МГТУ. 2020. Т. 23. № 2. С. 122–130. https://doi.org/10.21443/1560-9278-2020-23-2-122-130
- Патин С.А. Нефть и экология континентального шельфа. М.: ВНИРО, 2001. 247 с. URL: http://hdl.handle.net/123456789/1478
- Патин С.А. Морской нефтегазовый комплекс: факторы экологического риска // Защита окружающей среды в нефтегазовом комплексе. 2015. № 4. С. 5–14.
- Руднева И.И., Медянкина М.В., Шайда В.Г. Оценка токсичности буровых растворов для морских бентосных ракообразных // Экосистемы. 2023. Т. 34. С. 140–144.
- Руднева И.И., Шайда В.Г., Медянкина М.В., Шайда О.В. Оценка действия бурового раствора на зостеру Nanozostera noltii Hornemann // Вопр. современной альгологии. 2024. Т. 34. № 1 (Online).
- Седых В.Н., Игнатьев Л.А., Семенюк М.В. Реакции растений на воздействие отходов бурения. Новосибирск: Наука, 2004. 104 с.
- Тарасова С.М., Гаевая Е.В. Исследование токсичности буровых шламов и возможностей их утилизации // Проблемы региональной экономики. 2021. Т. 3. С. 75–79. https://doi.org/10.24412/1728-323X-2021-3-75-79
- Antia M., Ezejiofor A.N., Obasi C.N., Orisakwe O.E. Environmental and public health effects of spent drilling fluid: an updated systematic review // J. Hazard. Mater. Adv. 2022. V. 7. Art. ID 100120. https://doi.org/10.1016/j.hazadv.2022.100120
- Aslan J.F., Weber L., Iannacone J. et al. Toxicity of drilling fluids in aquatic organisms: a review // Ecotoxicol. Environ. Contam. 2019. V. 14. № 1. P. 35–47. https://doi.org/10.5132/eec.2019.01.04
- Bakhtyar S., Gagnon M. Biomarker response of pink snapper to chronic exposure to synthetic-based drilling muds // Environ. Bioindic. 2009. V. 4. № 2. P. 136–152. https://doi.org/10.1080/15555270902970611
- Bakhtyar S., Gagnon M.M. Toxicity assessment of individual ingredients of synthetic-based drilling muds (SBMs) // Environ. Monit. Assess. 2012. V. 184. P. 5311–5325. https://doi.org/10.1007/s10661-011-2342-x
- Bakke T., Klungsøyr J., Sanni S. Environmental impacts of produced water and drilling waste discharges from the Norwegian offshore petroleum industry // Mar. Environ. Res. 2013. V. 92. P. 154–169. https://doi.org/10.1016/j.marenvres.2013.09.012
- Barlow M.J., Kingston P.F. Observations on the effects of barite on the gill tissues of the suspension feeder Cerastoderma edule (Linné) and the deposit feeder Macoma balthica (Linné) // Mar. Pollut. Bull. 2001. V. 42. № 1. P. 71–76. https://doi.org/10.1016/S0025-326X(00)00117-X
- Bechmann R.K., Westerlund S., Baussant T. et al. Impacts of drilling mud discharges on water column organism and filter feeding bivalves // International Research Institute of Stavanger (IRIS) Rep. 2006. 72 p.
- Bejarano A.C., Adams J.E., McDowell J. et al. Recommendations for improving the reporting and communication of aquatic toxicity studies for oil spill planning, response, and environmental assessment // Aquat. Toxicol. 2023. V. 255. Art. ID 106391. https://doi.org/10.1016/j.aquatox.2022.106391
- Berge J.A. The effect of treated drill cuttings on benthic recruitment and community structure: main results of an experimental study on a natural seabed // The physical and biological effects of processed oil drill cuttings. E & P Forum Rep. 1996. № 2. 61/202. P. 41–63.
- Beyer J., Trannum H.C., Bakke T. et al. Environmental effects of the Deepwater Horizon oil spill: a review // Mar. Pollut. Bull. 2016. V. 110. № 1. P. 28–51. https://doi.org/10.1016/j.marpolbul.2016.06.027
- Bookhout C.G., Monroe R.J., Forward R.B. Jr., Costlow J.D. Jr. Effects of soluble fractions of drilling fluids on development of crabs, Rhithropanopeus harrisii and Callinectes sapidus // Water, Air, Soil Pollut. 1984. V. 21. P. 183–197. https://doi.org/10.1007/BF00163623
- Borah D., Gopalakrishnan S., Nooruddin T. Carbohydrate biolubricants from algae and cyanobacteria // J. Polym. Environ. 2021. V. 29. P. 3444–3458. https://doi.org/10.1007/s10924-021-02144-z
- Buapet B., Mohammadi N.S., Pernice M. et al. Excess copper promotes photoinhibition and modulates the expression of antioxidant-related genes in Zostera muelleri // Aquat. Toxicol. 2019. V. 207. P. 91–100. https://doi.org/10.1016/j.aquatox.2018.12.005
- Bybee K. Environmental aspects of the use and disposal of nonaqueous drilling fluids // J. Pet. Technol. 2004. V. 56. № 11. P. 64–84. https://doi.org/10.2118/1104-0064-JPT
- Cerón-Benavides S.M., Santos-Acevedo M., Cerón A.E.G. et al. Acute toxicity assessment of an offshore exploration fluid for the fertilization sea urchin Lytechinus variegatus // Bol. Invest. Mar. Cost. 2014. V. 43. № 2. P. 383–405.
- Cervello G., Olivier F., Chauvaud L. et al. Impact of anthropogenic sounds (pile driving, drilling and vessels) on the development of model species involved in marine biofouling // Front. Mar. Sci. 2023. V. 10. Art. ID 1111505. https://doi.org/10.3389/fmars.2023.1111505
- Conklin P.J., Rao K.R. Comparative toxicity of offshore and oil-added drilling muds to larvae of the grass shrimp Palaemonetes intermedius // Arch. Environ. Contam. Toxicol. 1984. V. 13. P. 685–690. https://doi.org/10.1007/BF01055931
- Contreras-León G.J., Rodríguez-Satizábal S.A., Castellanos-Romero C.M. et al. Acute toxicity of drilling muds on Litopenaeus vannamei (Boone, 1931) postlarvae // Cienc., Tecnol. Futuro. 2013. V. 5. № 3. P. 127–138. https://doi.org/10.29047/01225383.52
- Cranford P.J., Gordon D.C. Jr., Lee K. et al. Chronic toxicity and physical disturbance effects of water- and oil-based drilling fluids and some major constituents on adult sea scallops (Placopecten magellanicus) // Mar. Environ. Res. 1999. V. 48. № 3. P. 225–256. https://doi.org/10.1016/S0141-1136(99)00043-4
- Deka B. Drilling fluids and their types // Basics of drilling fluid. Noida, India: CIIR Scientific Publications. 2023. Ch. 2. P. 4–7.
- Denoyelle M., Geslin E., Jorissen F.J. et al. Innovative use of foraminifera in ecotoxicology: A marine chronic bioassay for testing potential toxicity of drilling muds // Ecol. Indic. 2012. V. 12. № 1. P. 17–25. https://doi.org/10.1016/j.ecolind.2011.05.011
- Du W., Wan Y., Zong N. et al. Status quo of soil petroleum contamination and evolution of bioremediation // Pet. Sci. 2011. V. 8. P. 502–514. https://doi.org/10.1007/s12182-011-0168-3
- Edge K.J., Johnston E.L., Dafforn K.A. et al. Sub-lethal effects of water-based drilling muds on the deep-water sponge Geodia barretti // Environ. Pollut. 2016. V. 212. P. 525–534. https://doi.org/10.1016/j.envpol.2016.02.047
- Ejileugha Ch., Ezejiofor A.N., Ezealisiji K.M. et al. Metal oxide nanoparticles in oil drilling: Aquatic toxicological concerns // J. Hazard. Mater. Adv. 2022. V. 7. Art. ID 100116. https://doi.org/10.1016/j.hazadv.2022.100116
- Farkas J., Bådsvik С.Y., Altin D. Acute and physical effects of water-based drilling mud in the marine copepod Calanus finmarchicus // J. Toxicol. Environ. Health. Pt. A. 2017. V. 80. № 16–18. P. 907–915. https://doi.org/10.1080/15287394.2017.1352197
- Folayan A.J., Dosunmu A., Oriji B. Microbial activity evaluation and aerobic transformation of deep water offshore synthetic drilling fluids in soil: a case study of ternary mixture of synthetic ethyl esters of plants oil (Seepmixture) synthetic drilling fluid in agbami (Niger delta) deep water field // Results Eng. 2022. V. 15. Art. ID 100537. https://doi.org/10.1016/j.rineng.2022.100537
- Gagnon M.M., Bakhtyar S. Induction of fish biomarkers by synthetic-based drilling muds // PLoS One. 2013. V. 8. № 7. Art. ID e69489. https://doi.org/10.1371/journal.pone.0069489
- Go L.Ch., Fortela D.L.B., Revellame E. et al. Biobased chemical and energy recovered from waste microbial matrices // Curr. Opin. Chem. Eng. 2019. V. 26. P. 65–71. https://doi.org/10.1016/j.coche.2019.08.005
- Holdway D.A. The acute and chronic effects of wastes associated with offshore oil and gas production on temperate and tropical marine ecological processes // Mar. Pollut. Bull. 2002. V. 44. P. 185–203. https://doi.org/10.1016/S0025-326X(01)00197-7
- Hu C., Yang X, Gao L. et al. Comparative analysis of heavy metal accumulation and bioindication in three seagrasses: Which species is more suitable as a bioindicator? // Sci. Total Environ. 2019. V. 669. P. 41–48. https://doi.org/10.1016/j.scitotenv.2019.02.425
- Ismail A.R., Moslan M.S., Ismail N.J. Toxicity effect on Peocilia latipinna using different types of nonaqueous drilling fluids // 12th Int. UMT Annu. Symp. (UMTAS 2013) “Advancements in Marine and Freshwater Sciences”. Kuala Terengganu, Malaysia, 2013. P. 211–216.
- Jones R., Wakeford M., Currey-Randall L. et al. Drill cuttings and drilling fluids (muds) transport, fate and effects near a coral reef mesophotic zone // Mar. Pollut. Bull. 2021. V. 172. Art. ID 112717. https://doi.org/10.1016/j.marpolbul.2021.112717
- Kelly J.R., Duke T.W., Harwell M.A., Harwell C.C. An ecosystem perspective on potential impacts of drilling fluid discharges on seagrasses // Environ. Manage. 1987. V. 11. P. 537–562. https://doi.org/10.1007/BF01867661
- Khalturin A.A., Parfenchik K.D., Shpenst V.A. Features of oil spills monitoring on the water surface by the Russian Federation in the Arctic Region // J. Mar. Sci. Eng. 2023. V. 11. Art. ID 111. https://doi.org/10.3390/jmse11010111
- Kuperman R.G., Checkai R.T., Phillips C.T. et al. Toxicity assessments of antimony, barium, beryllium, and manganese for development of ecological soil screening levels (Eco-SSL) using enchytraeid reproduction benchmark values // Edgewood Chemical Biological Center. Aberdeen Proving Ground, Md., USA. Rep. No. toxnet:NTIS/02928275. 86 p. URL: http://handle.dtic.mil/100.2/ADA422074
- Lewis M., Pryor R. Toxicities of oils, dispersants and dispersed oils to algae and aquatic plants: review and database value to resource sustainability // Environ. Pollut. 2013. V. 180. P. 345367. https://doi.org/10.1016/j.envpol.2013.05.001
- Lira V.F., Santos G.A.P., Derycke S. Effects of barium and cadmium on the population development of the marine nematode Rhabditis (Pellioditis) marina // Mar. Environ. Res. 2011. V. 72. P. 151–159. https://doi.org/10.1016/j.marenvres.2011.07.003
- Liu Y., Chen Q., Li Y. et al. Toxic effects of cadmium on fish // Toxics. 2022. V. 1. Art. ID 622. https://doi.org/10.3390/toxics10100622
- Macauley J.M., Clark J.R., Pitts A.R. Use of Thalassia and its epiphytes for toxicity assessment: effects of a drilling fluid and tributyltin // Plants for toxicity assessment. Philadelphia: ASTM International, 1990. https://doi.org/10.1520/STP19068S
- Mahmoud H., Mohammed A.A.A., Nasser M. et al. Green drilling fluid additives for a sustainable hole-cleaning performance: a comprehensive review // Emergent Mater. 2024. V. 7. P. 387–402 https://doi.org/10.1007/s42247-023-00524-w
- Marinho L.S., Pereira B.C., Guandalim F.P., Cavalcante L.M. Monitoring of drilling fluids and cuttings as an environmental management tool for fluid operations // Offshore Technol. Conf. (Houston, Texas, USA, May 6–9, 2024). 2024. https://doi.org/10.4043/35329-MS
- Marsden I.D., Cranford P.J. Scallops and marine contaminants // Dev. Aquacult. Fish. Sci. 2016. V. 40. P. 567–584. https://doi.org/10.1016/S0167-9309(06)80040-2
- Mazlova E.A., Malina N., Semenycher V.G. Study of influence of drilling wastes on Black Sea planktonic and benthic organisms // Chem. Technol. Fuels Oils. 2019. V. 55. № 5. P. 70-84. https://doi.org/10.1007/s10553-019-01005-9
- Melton H.R., Smith J.P., Mairs H.L. et al. Environmental aspects of the use and disposal of non-aqueous drilling fluids associated with offshore oil & gas operations // SPE Int. Conf. on Health, Safety, and Environment in Oil and Gas Exploration and Production (Calgary, Alberta, Canada. March 2004). 2004. Pap. No. SPE-86696-MS. https://doi.org/10.2118/86696-MS
- Mohammadi N.S., Buapet P., Pernice M. et al. Transcriptome profiling analysis of the seagrass, Zostera muelleri under copper stress // Mar. Pollut. Bull. 2019. V. 149. Art. ID 110556. https://doi.org/10.1016/j.marpolbul.2019.110556
- Neff J.M. Composition, environmental fates, and biological effects of water-based drilling muds and cuttings discharged to the marine environment: A synthesis and annotated bibliography. Prepared for Petroleum Environmental Research Forum (PERF) and American Petroleum Institute. 2003. 83 p.
- Neshovska H., Manev I., Kirov V. Heavy metal levels in water, brown algae (Cystoseira barbata), and eelgrass (Zostera marina) from the Southern Black Sea coast of Bulgaria // Int. J. Vet. Sci. Anim. Husb. 2021. V. 6. № 1. P. 15–18. https://doi.org/10.22271/veterinary.2021.v6.i1a.317
- Netto S.A., Gallucci F., Fonseca G. Deep-sea meiofauna response to synthetic-based drilling mud discharge off SE Brazil // Deep-Sea Res. Pt. II. 2009. V. 56. № 1–2. P. 41–49. https://doi.org/10.1016/j.dsr2.2008.08.018
- Nrior R.R., Odokuma L.O. Comparative toxicity of drilling fluids to marine water shrimp (Mysidoposis bahia) and brackish water shrimp (Palaemonetes africanus) // IOSR J. Environ. Sci. Toxicol. Food Technol. 2015. V. 9. № 7. P. 73–79. https://doi.org/10.9790/2402-09727379
- Ogeleka D.F., Tudararo-Aherobo L.E. Short-term toxicity of oil-based drilling fluid to the brackish-water shrimp Palaemonetes africanus // Afr. J. Aquat. Sci. 2011. V. 36. № 1. P. 109–112. https://doi.org/10.2989/16085914.2011.559707
- Okogbue C.O., Anyiam O.A., Adun A.A. Impact assessment of drilling waste generated in “Eden Field” offshore, Niger Delta, Nigeria // Arabian J. Geosci. 2016. V. 9. Art. no. 538. https://doi.org/10.1007/s12517-016-2568-6
- Østgaard K., Jensen A. Acute phytotoxicity of oil-based drilling muds // Oil Petrochem. Pollut. 1985. V. 2. № 4. P. 281–291. https://doi.org/10.1016/S0143-7127(85)90261-3
- Otaigbe J.O.E., Osuji L.C., Azubike A.N. Quantal response of Palaemonetes africanus in locally formulated drilling mud lubricants // Toxicol. Environ. Chem. 2006. V. 88. № 4. P. 719–727. https://doi.org/10.1080/02772240600903029
- Pereira L.B., Sad C.M.S., Castro E.V.R. et al. Environmental impacts related to drilling fluid waste and treatment methods: A critical review // Fuel. 2022. V. 310. Pt. B. Art. ID 122301. https://doi.org/10.1016/j.fuel.2021.122301
- Pérez M.A., Rengifo R., Pereira C., Hernández M. Dividivi tannins: an ecological product for water-based drilling fluids // Environ. Dev. Sustain. 2017. V. 19. P. 1815–1829. https://doi.org/10.1007/s10668-016-9829-0
- Price II W.A., Macauley J.M., Clark J.R. Effects of drilling fluids on Thalassia testudinum and its epiphytic algae // Environ. Exp. Bot. 1986. V. 26. № 4. P. 321–330. https://doi.org/10.1016/0098-8472(86)90019-5
- Qiao Y., Zhang Y., Xu S. et al. Multi-leveled insights into the response of the eelgrass Zostera marina L to Cu than Cd exposure // Sci. Total Environ. 2022. V. 845. Art. ID 157057. https://doi.org/10.1016/j.scitotenv.2022.157057
- Raimondi P.T., Barnett A.M., Krause P.R. The effects of drilling muds on marine invertebrate larvae and adults // Environ. Toxicol. Chem. 1997. V. 16. P. 1218–1228. https://doi.org/10.1002/etc.5620160617
- Rudneva I.I. Interspecies peculiarities of biomarkers response of marine fish embryos to oil pollution // Pollution. 2023. V. 9. № 1. Р. 243–253. http://doi.org/10.22059/poll.2022.345522.1530
- Sanni S., Pampanin D.M., Goonewardene S.P. et al. Ecotoxicity of thermally treated oil-based drilling wastes // Proc. 4th Int. Conf. on Industrial and Hazardous Waste Management. Chania. 2014. V. 2. № 5. 8 p.
- Santos M.F.L., Silva J., Fachel J.M.G., Pulgati F.H. Effects of non-aqueous fluids-associated drill cuttings discharge on shelf break macrobenthic communities in the Campos Basin, Brazil // Environ. Monit. Assess. 2010. V. 167. P. 65–78. https://doi.org/10.1007/s10661-010-1518-0
- Schatten G., Simerly C., Schatten H. Effects of barium sulfate on sea urchin fertilization and early development // Energy wastes in the ocean. New York: John Wiley & Sons, 1982. P. 233–239.
- Seyedmohammadi J. The effects of drilling fluids and environment protection from pollutants using some models // Model. Earth Syst. Environ. 2017. V. 3. Art. ID 23. https://doi.org/10.1007/s40808-017-0299-7
- Short F.T., Kosten S., Morgan P.A. et al. Impacts of climate change on submerged and emergent wetland plants // Aquat. Bot. 2016. V. 135. P. 3–17. https://doi.org/10.1016/j.aquabot.2016.06.006
- Sil A., Wakadikar K., Kumar S. et al. Toxicity characteristics of drilling mud and its effect on aquatic fish populations // J. Hazard., Toxic Radioact. Waste. 2012. V. 16. № 1. P. 51–57. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000092
- Soegianto A., Irawan B., Affandi M. Toxicity of drilling waste and its impact on gill structure of post larvae of tiger prawn (Penaeus monodon) // Global J. Environ. Res. 2008. V. 2. P. 36–41.
- Spangenberg J.V., Cherr G.N. Developmental effects of barium exposure in a marine bivalve (Mytilus californianus) // Environ. Toxicol. Chem. 1996. V. 15. P. 1769–1774. https://doi.org/10.1002/etc.5620151018
- Still I., Rabke S., Candler J. Development of a standardized reference sediment to improve the usefulness of marine benthic toxicity testing as a regulatory tool // Environ. Toxicol. 2000. V. 15. № 5. P. 406–416. https://doi.org/10.1002/1522-7278(2000)15:5<406::AID-TOX8>3.0.CO;2-%23
- Strachan M.F., Kingston P.F. A comparative study on the effects of barite, ilmenite and bentonite on four-suspension-feeding bivalves // Mar. Pollut. Bull. 2012. V. 64. № 10. P. 2029–2038. https://doi.org/10.1016/j.marpolbul.2012.06.023
- Tamala J.K., Maramag E.I., Simeon K.A., Ignacio J.J. A bibliometric analysis of sustainable oil and gas production research using VOSviewer // Cleaner Eng. Technol. 2022. V. 7. Art. ID 100437. https://doi.org/10.1016/j.clet.2022.100437
- Thibodeaux G.M., Baudoin N.A., Chirdon W.M. Investigation of proteinaceous algal biomass as a drilling fluid component // Results Eng. 2023. V. 19. Art. ID 101364. https://doi.org/10.1016/j.rineng.2023.101364
- Tsvetnenko Y.B., Black A.J., Evans L.H. Development of marine sediment reworker tests with Western Australian species for toxicity assessment of drilling mud // Environ. Toxicol. 2000. V. 15. № 5. P. 540–548. https://doi.org/10.1002/1522-7278(2000)15:5<540::AID-TOX26>3.0.CO;2-A
- Xiong D., Han X. Particular pollutants, human health risk and ecological risk of oil-based drilling fluid: a case study of Fuling shale gas field // Environ. Geochem. Health. 2023. V. 45. P. 981–995. https://doi.org/10.1007/s10653-022-01259-z
- Yalman E., Federer-Kovacs G., Tolga Depci T. et al. Development of novel inhibitive water-based drilling muds for oil and gas field applications // J. Pet. Sci. Eng. 2022. V. 210. Art. ID 109907. https://doi.org/10.1016/j.petrol.2021.109907
- Yan T., Zhou M.-J., Tan Z.-J. et al. Application of Neomysis awatschensis as a standard marine toxicity test organism in China // J. Environ. Sci. (China). 2003. V. 15. № 6. P. 791–795.
- Zhao Z., Liu Q., Liao Y. et al. Ecological risk assessment of trace metals in sediments and their effect on benthic organisms from the south coast of Zhejiang province, China // Mar. Pollut. Bull. 2023. V. 187. Art. ID 114529. https://doi.org/10.1016/j.marpolbul.2022.114529
- Zheng G., He Y. Dynamic response of microbial communities to thermally remediated oil-bearing drilling waste in wheat soil // Chemosphere. 2023. V. 329. Art. ID 138618. https://doi.org/10.1016/j.chemosphere.2023.138618
- Zhu H., Liu X. Application of Microtox biological toxicity testing technique in drilling fluid analysis // Drill. Fluid & Completion Fluid. 2015. V. 32. № 1. P. 53–56. https://doi.org/10.3969/j.issn.1001-5620.2015.01.014
Дополнительные файлы
