Metabolism Variations in the Bivalve Mollusk Anadara kagoshimensis Tokunaga, 1906 (Bivalvia: Arcidae) under Upwelling Conditions in the Black Sea (Experimental Data)
- Authors: Vialova O.Y.1
-
Affiliations:
- Kovalevsky Institute of Biology of the Southern Seas, Russian Academy of Sciences
- Issue: Vol 50, No 4 (2024)
- Pages: 301-310
- Section: ОРИГИНАЛЬНЫЕ СТАТЬИ
- Published: 24.11.2024
- URL: https://cardiosomatics.orscience.ru/0134-3475/article/view/670343
- DOI: https://doi.org/10.31857/S0134347524040055
- ID: 670343
Cite item
Abstract
Studies of the energy metabolism in a bivalve mollusk, the ark clam Anadara kagoshimensis (Tokunaga, 1906), were carried out for the first time under experimental conditions simulating dynamic variations in the seawater characteristics at the stages of development and end of upwelling event in the Black Sea. It was shown that the level of energy metabolism of A. kagoshimensis, while being in the zone of upwelling formation, reduced, on average, by 5% per degree of temperature decrease. During the upwelling relaxation phase (14→26°C), the restoration of the respiration intensity parameters of the clam was slower than expected, with a temperature coefficient Q10 = 1.31. The acidification of the seawater by 1.0 (up to рН 7.2), combined with a temperature decrease (26→20°C), aggravated the negative effect by 25–45%. It has been found that the clam A. kagoshimensis reduces energy expenditure by approximately 60% under upwelling conditions (cold stress and acidification). Consequences of the negative effect of a sharp temperature variation lead to a delay in the metabolism recovery to normal values.
Keywords
Full Text

About the authors
O. Yu. Vialova
Kovalevsky Institute of Biology of the Southern Seas, Russian Academy of Sciences
Author for correspondence.
Email: vyalova07@gmail.com
ORCID iD: 0000-0002-8304-0029
Russian Federation, Sevastopol 299011
References
- Алимов А.Ф. Функциональная экология пресноводных двустворчатых моллюсков. Л.: Наука, 1981. 248 с.
- Вялова О.Ю. Метаболический отклик культивируемых двустворчатых моллюсков на закисление Черного моря // Экологическая безопасность прибрежной и шельфовой зон моря. 2023а. № 4. С. 73–86.
- Вялова О.Ю. Энергетический метаболизм Mytilus galloprovincialis в условиях низких рН морской воды // Водные биоресурсы и среда обитания. 2023б. Т. 6. № 3. С. 40–51.
- https://doi.org/10.47921/2619-1024_2023_6_3_40
- Жаворонкова А.М., Золотницкий А.П. Интенсивность дыхания анадары – Anadara inaequivalvis (Bruguière, 1789), акклиматизированной в Черном море // Тр. ЮгНИРО. 2017. Т. 54. С. 104–109.
- Жаворонкова А.М., Золотницкий А.П., Сытник Н.А. О влиянии массы тела и температуры воды на интенсивность дыхания анадары – Anadara kagoshimensis (Tokunaga, 1906) Азово-Черноморского бассейна // Ученые зап. КФУ. Биология. Химия. 2017. Т. 3. № 4. С. 70–81.
- Полонский А.Б., Гребнева Е.А. Пространственно-временная изменчивость водородного показателя вод Черного моря // Докл. Акад. наук. 2019. Т. 486. № 4. C. 494–499.
- https://doi.org/10.31857/S0869-56524864494-499
- Солдатов А.А., Ревков Н.К., Петросян В.Г. Anadara kagoshimensis – Анадара кагошименсис // Самые опасные инвазионные виды России (ТОП-100) / под ред. Ю.Ю. Дгебуадзе, В.Г. Петросян, Л.А. Хляп. М.: Т-во науч. изд. КМК. 2018. С. 260–266.
- Станичная Р.Р., Станичный С.В. Апвеллинги Черного моря // Совр. проблемы дистанционного зондирования Земли из космоса. 2021. Т. 18. № 4. С. 195–207.
- https://doi.org/10.21046/2070-7401-2021-18-4-195-207
- Толстошеев А.П., Мотыжев С.В., Лунев Е.Г. Результаты долговременного мониторинга вертикальной термической структуры шельфовых вод на Черноморском гидрофизическом полигоне РАН // Морской гидрофизический журнал. 2020. Т. 36. № 1. С. 75–87.
- https://doi.org/10.22449/0233-7584-2020-1-75-87
- Хоружий Д.С., Коновалов С.К. Суточный ход и межсуточные изменения содержания углекислого газа и растворенного неорганического углерода в прибрежных водах Черного моря // Морской гидрофизический журнал. 2014. № 1. С. 28–43.
- Carneiro A.P., Soares C.H.L., Manso P.R.J. et al. Impact of marine heat waves and cold spell events on the bivalve Anomalocardia flexuosa: A seasonal comparison // Mar. Environ. Res. 2020. V. 156. Art. ID 104898.
- https://doi.org/10.1016/j.marenvres.2020.104898
- Clements J.C., Darrow E.S. Eating in an acidifying ocean: a quantitative review of elevated CO2 effects on the feeding rates of calcifying marine invertebrates // Hydrobiologia. 2018. V. 820. Р. 1–21.
- https://doi.org/10.1007/s10750-018-3665-1
- Czaja R., Pales-Espinosa E., Cerrato R.M. et al. Using meta-analysis to explore the roles of global upwelling exposure and experimental design in bivalve responses to low pH // Sci. Total Environ. 2023. V. 902. Art. ID 165900. https://doi.org/10.1016/j.scitotenv.2023.165900
- Dağteki̇n M., Dalgiç G., Erbay M. et al. Population abundance and growth parameters of an exotic bivalve species, Anadara kagoshimensis, in the Southwestern Black Sea // Turk. J. Zool. 2023. V. 47. № 1. Р. 20–32. https://doi.org/10.55730/1300-0179.3109
- Donelson J.M., Sunday J.M., Figueira W.F. et al. Understanding interactions between plasticity, adaptation and range shifts in response to marine environmental change // Philos. Trans. R. Soc. B. 2019. V. 374. Art. ID 20180186. https://doi.org/10.1098/rstb.2018.0186
- Doney S.C., Busch D.S., Cooley S.R. et al. The impacts of ocean acidification on marine ecosystems and reliant human communities // Annu. Rev. Environ. Resour. 2020. V. 45. Р. 83–112.
- https://doi.org/10.1146/annurev-environ-012320-083019
- Duarte C., Navarro J.M., Acuña K. et al. Combined effects of temperature and ocean acidification on the juvenile individuals of the mussel Mytilius chilensis // J. Sea Res. 2014. V. 85. P. 308–314.
- https://doi.org/10.1016/j.seares.2013.06.002
- Elge M. Acidification analysis of Black sea // Int. J. Environ. Geoinformatics. 2021. V. 8. № 4. P. 467–474. https://doi.org/10.30897/ijegeo.857893
- García-Huidobro M.R., Aldana M., Varela P. et al. The influence of upwelling on key bivalves from the Humboldt and Iberian current systems // Mar. Environ. Res. 2023. V. 189. Art. ID 106031.
- https://doi.org/10.1016/j.marenvres.2023.106031
- Gazeau F., Alliouane S., Bock C. et al. Impact of ocean acidification and warming on the Mediterranean mussel (Mytilus galloprovincialis) // Front. Mar. Sci. 2014. V. 1. Art. ID 62.
- https://doi.org/10.3389/fmars.2014.00062
- Gazeau F., Parker L.M., Comeau S. et al. Impacts of ocean acidification on marine shelled molluscs // Mar. Biol. 2013. V. 160. Р. 2207–2245.
- https://doi.org/10.1007/s00227-013-2219-3
- Goryachkin Yu.N. Upwelling nearby the Crimea Western Coast // Online Phys. Oceanogr. 2018. V. 25. № 5, P. 368–379.
- https://doi.org/10.22449/1573-160X-2018-5-368-379
- Hu M., Lin D., Shang Y. et al. CO2-induced pH reduction increases physiological toxicity of nano-TiO2 in the mussel Mytilus coruscus // Sci. Rep. 2017. V. 7. Art. ID 40015. https://doi.org/10.1038/srep40015
- Kang H.Y., Seong J., Kim C. et al. Seasonal energetic physiology in the ark shell Anadara kagoshimensis in response to rising temperature // Front. Mar Sci. 2022. V. 9. Art. ID 981504.
- https://doi.org/10.3389/fmars.2022.981504
- Kang H.Y., Seong J., Lee Y.-J. et al. Thermal effect on energetic physiology in the ark shell Scapharca subcrenata // Preprint of Research Square under Creative Commons Attribution 4.0 Int. License. Mountain View, Calif., 2020.
- https://doi.org/10.21203/rs.3.rs-45639/v1
- Kasapoğlu N. Body-shell dimension relations and growth parameters of the invasive ark clam (Anadara inaequavalvis) in Turkish coast of the Black Sea // Turk. J. Marit. Mar. Sci. 2018. V. 4. № 1. P. 46–51.
- Kelaher B.P., Mamo L.T., Provost E. et al. Influence of ocean warming and acidification on habitat-forming coralline algae and their associated molluscan assemblages // Global Ecol. Conserv. 2022. V. 35. Art. ID e02081. https://doi.org/10.1016/j.gecco.2022.e02081
- Kroeker K.J., Kordas R.L., Crim R. et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming // Global. Change Biol. 2013. V. 19. № 6. P. 1884–1896.
- https://doi.org/10.1111/gcb.12179
- Lagos N.A., Benítez S., Duarte C. et al. Effects of temperature and ocean acidification on shell characteristics of Argopecten purpuratus: implications for scallop aquaculture in an upwelling-influenced area // Aquacult. Environ. Interact. 2016. V. 8. P. 357−370.
- https://doi.org/10.3354/aei00183
- Leung J.Y.S., Zhang S., Connell S.D. Ocean acidification really a threat to marine calcifiers? A systematic review and meta-analysis of 980+ studies spanning two decades // Small. 2022. V. 18. № 35. Art. ID 2107407. https://doi.org/10.1002/smll.202107407
- Masanja F., Xu Y., Yang K. et al. Surviving the cold: a review of the effects of cold spells on bivalves and mitigation measures // Front. Mar. Sci. 2023. V. 10. Art. ID 1158649.
- https://doi.org/10.3389/fmars.2023.1158649
- Mekkes L., Renema W., Bednaršek N. et al. Pteropods make thinner shells in the upwelling region of the California Current Ecosystem // Sci. Rep. 2021. V. 11. Art. ID 1731. https://doi.org/10.1038/s41598-021-81131-9
- Nie H., Li D., Li L. et al. Physiological and biochemical responses of Dosinia corrugata to different thermal and salinity stressors // J. Exp. Zool. Part A. 2018. V. 329. № 1. P. 15–22. https://doi.org/10.1002/jez.2152
- Novitskaya V.N., Soldatov A.A. Peculiarities of functional morphology of erythroid elements of hemolymph of the bivalve mollusk Anadara inaequivalvis, the Black sea // Hydrobiol. J. 2013. V. 49. № 6. P. 64–71.
- https://doi.org/10.1615/HydrobJ.v49.i6.60
- Podymov O.I., Ocherednik V.V., Silvestrova K.P. et al. Upwellings and downwellings caused by mesoscale water dynamics in the coastal zone of Northeastern Black Sea // J. Mar. Sci. Eng. 2023. V. 11. Art. ID 1628. P. 1–17. https://doi.org/10.3390/jmse11081628
- Ramajo L., Sola-Hidalgo C., Valladares M. et al. Size matters: Physiological sensitivity of the scallop Argopecten purpuratus to seasonal cooling and deoxygenation upwelling-driven events // Front. Mar. Sci. 2022. V. 9. Art. ID 992319.
- https://doi.org/10.3389/fmars.2022.992319
- Ramajo L., Fernández C., Núñez Y. et al. Physiological responses of juvenile Chilean scallops (Argopecten purpuratus) to isolated and combined environmental drivers of coastal upwelling // ICES J. Mar. Sci. 2019. V. 76. № 6. P. 1836–1849.
- https://doi.org/10.1093/icesjms/fsz080
- Schlegel R.W., Darmaraki S., Benthuysen J.A. et al. Marine cold-spells // Prog. Oceanogr. 2021. V. 198. Art. ID 102684. https://doi.org/10.1016/j.pocean.2021.102684
- Thomsen J., Casties I., Pansch C. et al. Food availability outweighs ocean acidification effects in juvenile Mytilus edulis: laboratory and field experiments // Global Change Biol. 2013. V. 19. № 4. P. 1017–1027. https://doi.org/10.1111/gcb.12109
- Townhill B.L., Artioli Y., Pinnegar J.K. et al. Exposure of commercially exploited shellfish to changing pH levels: how to scale-up experimental evidence to regional impacts // ICES J. Mar. Sci. 2022. V. 79. № 9. P. 2362–2372. https://doi.org/10.1093/icesjms/fsac177
- Verdelhos T., Marques J.C., Anastácio P. Behavioral and mortality responses of the bivalves Scrobicularia plana and Cerastoderma edule to temperature, as indicator of climate change’s potential impacts // Ecol. Indic. 2015. V. 58. P. 95–103.
- https://doi.org/10.1016/j.ecolind.2015.05.042
- Vialova O.Yu., Stolbov A.Ya. Respiration of invasive bivalve Anadara kagoshimensis (Tokunaga, 1906) at the 14-days starvation and different oxygen content in sea water // J. Shellfish Res. 2022. V. 41. № 3. Р. 349–353. https://doi.org/10.2983/035.041.0300
- Wang J., Dong B., Yu Z.-X., Yao C.-L. The impact of acute thermal stress on green mussel Perna viridis: оxidative damage and responses // Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol. 2018. V. 222. P. 7–15.
- https://doi.org/10.1016/j.cbpa.2018.04.001
- Wanjeri V.W.O., Okuku E., Ngila J.C. et al. Effect of seawater acidification on physiological and energy metabolism responses of the common сockle (Anadara antiquata) of Gazi Bay, Kenya // Mar. Pollut. Bull. 2023. V. 195. Art. ID 115500.
- https://doi.org/10.1016/j.marpolbul.2023.115500
- Zhao X., Shi W., Han Y. et al. Ocean acidification adversely influences metabolism, extracellular pH and calcification of an economically important marine bivalve, Tegillarca granosa // Mar. Environ. Res. 2017. V. 125. P 82–89.
- https://doi.org/10.1016/j.marenvres.2017.01.007
Supplementary files
