“CONTINENTALIS” AND “INSULARIS”:TWO HIGHLY DIVERGED MITOCHONDRIAL LINEAGES OF THE JAPANESE BIG-FOOTED BAT (MYOTIS MACRODACTYLUS (TEMMINCK, 1840), VESPERTILIONIDAE, CHIROPTERA)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The Japanese Big-footed bat, Myotis macrodactylus, is a protected and vulnerable Far Eastern bat species. In Russia, the distribution range consists of two isolated parts: the south of Primorsky Krai and Kunashir Island. Three morphological subspecies have been distinguish in the Japanese Big-footed bat: the nominotypical one, distributed on the Japanese islands, M. m. continentalis, described from the southern Primorye, and M. m. insularis, presumably living on the Kunashir Island. Nevertheless, the intraspecific variability in the mainland part of the range, as well as the genetic differences between the subspecies, remains unknown. The work we carried out allowed us to identify for the first time two highly divergent mitochondrial lineages in M. macrodactylus with an average p-distance between them amounting to 3.97%, indicating a subspecific level of divergence. The Insularis lineage is distributed on the Japanese islands and Kunashir Island, this coinciding with the supposed range of the nominotypical subspecies, as well as in South Korea, including the Jeju Island. The Continentalis lineage is revealed exceptionally in the southern Primorye and in adjacent areas of northeastern China, this correlating with the supposed range of M. m. continentalis. In contrast to the mainland lineage, the island one is more strongly differentiated and contains at least four clades (I–IV) with unclear distributions. All M. macrodactylus studied from the Kunashir Island belong to Clade I, prevailing on Honshu and Hokkaido, within which they are characterized by the lowest nucleotide diversity. The Continentalis lineage is characterized by a star-like structure with the predominance of the central haplotype, while the greatest genetic diversity was identified in the Primorsky Krai, this possibly indicating a favorable position of this rare protected species’ population.

About the authors

U. V. Gorobeyko

Federal Scientific Center of East Asia Terrestrial Biodiversity

Author for correspondence.
Email: ekz.bio@ya.ru
Vladivostok, 690022 Russia

E. V. Krokhaleva

Far Eastern Federal University

Email: zhenya.krokhaleva@mail.ru
Vladivostok, 690922 Russia

A. A. Kadetova

Moscow Zoo

Email: asfedlynxx@mail.ru
Moscow, 123242 Russia

D. V. Kazakov

Institute of Environmental and Agricultural Biology (X-BIO); Institute of General and Experimental Biology, Siberian Branch

Email: kazakov.denis.95@mail.ru
University of Tyumen, Tyumen, 625003 Russia; Ulan-­Ude 670047, Russia

A. A. Maslov

Institute of Animal Systematics and Ecology, Siberian Branch

Email: random115@mail.ru
Novosibirsk, 630091 Russia

S. Y. Stefanov

Kurilsky Nature Reserve

Email: serstef@mail.ru
Yuzhno-­Kurilsk, 694500 Russia

References

  1. Каваи К., 2013. Does Myotis macrodactylus fly across the Nemuro Strait? Insights from ecological, genetic, and stable isotope analyses // Итоговый отчет по грантовому исследованию 23570014. Саппоро: Университет Хоккайдо. 4 с. [Японский язык]
  2. Крускоп С.В., 2012. Отряд Chiroptera // Павлинов И.Я., Лисовский А.А. (ред.) Млекопитающие России: систематико-географический справочник (Сборник трудов Зоологического музея МГУ. Т. 52). Москва: Товарищество научных изданий КМК. С. 73–126.
  3. Охотина М.В., Фёдоров А.Ю., 1978. Колониальные виды летучих мышей (Chiroptera) южной части Приморского края // Экология и зоогеография некоторых позвоночных суши Дальнего Востока. Владивосток: ДВНЦ АН СССР. С. 126–136.
  4. Тиунов М.П., 1985. Зимующие рукокрылые (Chiroptera) юга Дальнего Востока СССР // Зоологический журнал. Т. 64. № 10. С. 1595–1599.
  5. Тиунов М.П., 1997. Рукокрылые Дальнего Востока России. Владивосток: Дальнаука. 134 с.
  6. Тиунов М.П., 2005. Длиннопалая ночница // Красная книга Приморского края. Животные. С. 352–353.
  7. Тиунов М.П., 2016. Отряд Рукокрылые // Ефанов В.Ф. (ред.) Красная книга Сахалинской области: Животные. Официальное издание. Москва: Буки Веди. С. 17–19.
  8. Тиунов М.П., Крускоп С.В., Орлова М.В., 2021. Рукокрылые Дальнего Востока России и их эктопаразиты. М.: Издательство “Перо”. 191 с.
  9. Aljanabi S., Martinez I., 1997. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques // Nucleic Acids Research. V. 25. P. 4692– 4693. https://doi.org/ 10.1093/nar/25.22.4692
  10. Bickham J.W., Patton J.C., Schlitter D.A., Rautenbach I.L., Honeycutt R.L., 2004. Molecular phylogenetics, karyotypic diversity, and partition of the genus Myotis (Chiroptera: Vespertilionidae) // Molecular Phylogenetics and Evolution. V. 33. № 2. P. 333–338. https://doi.org/ 10.1016/j.ympev.2004.06.012
  11. Corbet G.B., 1978. The Mammals of the Palearctic Region: a taxonomic review. London: British Museum (Natural History). 314 p.
  12. Excoffier L., Lischer H.E.L., 2010. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows // Molecular Ecology Resources. T. 10. P. 564–567.
  13. Hall T.A., 1999. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT // Nucleic Acids Symposium Series. V. 41. P. 95–98.
  14. Jang S.S., Noh J.Y., Lo V.T., Choi Y.G., Yoon S.W. et al., 2020. The Epidemiological Characteristics of the Korean Bat Paramyxovirus between 2016 and 2019 // Microorganisms. V. 8. № 6. P. 844. https://doi.org/ 10.3390/microorganisms8060844
  15. Jo Y.-S., Baccus J.T., Koprowski J.L., 2018. Mammals of Korea: a review of their taxonomy, distribution and conservation status // Zootaxa. V. 4522. № 1. P. 1–216. https://doi.org/ 10.11646/zootaxa.4522.1.1
  16. Kawai K., Nikaido M., Harada M., Matsumura S., Lin L.K. et al., 2003. The status of the Japanese and East Asian bats of the genus Myotis (Vespertilionidae) based on mitochondrial sequences // Molecular Phylogenetics and Evolution. V. 28. № 2. 297–307. https://doi.org/ 10.1016/S1055-7903(03)00121-0
  17. Kawai K., Kondo N., Sasaki N., Fukui D., Dewa H. et al., 2006. Distinguishing between cryptic species Myotis ikonnikovi and M. brandtii gracilis in Hokkaido, Japan: evaluation of a novel diagnostic morphological feature using molecular methods // Acta Chiropterologica. V. 8. № 1. P. 95–102. https://doi.org/ 10.3161/1733-5329(2006)8[95: DBCSMI]2.0.CO;2
  18. Kim Y.-K., Park S.-G., Han S.-H., Han S., Oh H.-S., 2016. Genetic Population Structure and Phylogenetic Relationship of the Large-footed Bat (Myotis macrodactylus) on Jeju Island. // Journal of Life Science. V. 26. № 7. P. 749–57. https://doi.org/ 10.5352/JLS.2016.26.7.749
  19. Kim M.C., Jang S.S., Van Lo T., Noh J.Y., Lim H.A. et al., 2025. Circulation characteristics of bat coronaviruses linked to bat ecological factors in Korea, 2021– 2022 // Virulence. V. 16. № 1. https://doi.org/ 10.1080/21505594.2025.2502551
  20. Kiuno K., Nishizato M., Hu W., Mitsunaga S., Shigenaga C. et al., 2025. Genetic diversity of pathogenic Leptospira spp. harbored by bats in Japan // Microbial pathogenesis. V. 205. P. 107565. https://doi.org/ 10.1016/j.micpath.2025.107565
  21. Kobayashi F., Fukui D., Kojima E., Masuda R., 2012. Population genetic structure of the Japanese large-footed bat (Myotis macrodactylus) along three rivers on Hokkaido Island, Northern Japan. // Mammal Study. V. 37. P. 227–235. https://doi.org/ 10.3106/041.037.030
  22. Kobayashi T., Matsugo H., Maruyama J., Kamiki H., Takada A. et al., 2019. Characterization of a novel species of adenovirus from Japanese microbat and role of CXADR as its entry factor // Scientific reports. V. 9. № 1. P. 573. https://doi.org/ 10.1038/s41598-018-37224-z
  23. Kovacova V., Zukal J., Bandouchova H., Botvinkin A.D., Harazim M. et al., 2018. White-nose syndrome detected in bats over an extensive area of Russia // BMC Veterinary Research. V. 14. P. 192. https://doi.org/ 10.1186/s12917-018-1521-1
  24. Kruskop S.V., Borisenko A.V., Ivanova N.V., Lim B.K., Eger J.L., 2012. Genetic diversity of northeastern Palaearctic bats as revealed by DNA barcodes // Acta Chiropterologica. V. 14. № 1. P. 1–14. https://doi.org/ 10.3161/150811012X654222
  25. Kruskop S.V., Zhukova S.S., 2025. New subspecies of the common long-eared bat, Plecotus auritus (Vespertilionidae: Chiroptera), from the Caucasus // Russian Journal of Theriology. V. 24. № 1. P. 1–8. https://doi.org/ 10.15298/rusjtheriol.24.1.01
  26. Larsen R.J., Knapp M.C., Genoways H.H., Khan F.A.A., Larsen P.A. et al., 2012. Genetic Diversity of Neotropical Myotis (Chiroptera: Vespertilionidae) with an Emphasis on South American Species // PLoS ONE. V. 7. № 10. P. e46578. https://doi.org/ 10.1371/journal.pone.0046578
  27. Liu F., Song Y., Yan S., Luo J., Jiang F., 2009. Structure and sequence variation of the mitochondrial DNA control region in Myotis macrodactylus // Chinese Journal of Zoology. V. 44. P. 19–27.
  28. Liu T., Jia J., Liu L., Wang J., Chen W. et al., 2023. New Insights into the Taxonomy of Myotis Bats in China Based on Morphology and Multilocus Phylogeny // Diversity. V. 15. № 7. P. 805. https://doi.org/ 10.3390/d15070805
  29. Lo V.T., Yoon S.W., Noh J.Y., Kim Y., Choi Y.G. et al., 2020. Long-term surveillance of bat coronaviruses in Korea: Diversity and distribution pattern // Transboundary and emerging diseases. V. 67. № 6. P. 2839–2848. https://doi.org/ 10.1111/tbed.13653
  30. Luo B., Leiser-Miller L., Santana S.E., Zhang L., Liu T. et al., 2019. Echolocation call divergence in bats: a comparative analysis // Behavioral Ecology and Sociobiology. V. 73. P. 154. https://doi.org/ 10.1007/s00265-019-2766-9
  31. Matsumoto T., Sato M., Nishizono A., Ahmed K., 2019. A novel bat-associated circovirus identified in northern Hokkaido, Japan // Archives of virology. V. 164. № 8. P. 2179–2182. https://doi.org/ 10.1007/s00705-019-04286-x
  32. Nam T.W., Kim H.R., Cho J.Y., Park Y.C., 2015. Complete mitochondrial genome of a large-footed bat, Myotis macrodactylus (Vespertilionidae) // Mitochondrial DNA. V. 26. № 5. P. 661–662. https://doi.org/ 10.3109/19401736.2013.840596
  33. Nishizato M., Imai U., Shigenaga C., Obata M., Mitsunaga S. et al., 2025. Detection of various DNA and RNA viruses in bats in Yamaguchi Prefecture, Japan // Microbes and infection. V. 27. № 2. P. 105425. https://doi.org/ 10.1016/j.micinf.2024.105425
  34. Ohdachi S.D., Ishibashi Y., Iwasa M.A., Saitoh T. (red.), 2009. The wild mammals of Japan. Kyoto: Shoukadoh. 544 p.
  35. Ramírez-Soriano A., Ramos-Onsins S.E., Rozas J., Calafell F., Navarro A., 2008. Statistical power analysis of neutrality tests under demographic expansions, contractions and bottlenecks with recombination // Genetics. V. 179. № 1. P. 555–567. https://doi.org/ 10.1534/genetics.107.083006
  36. Rosyadi I., Shimoda H., Takano A., Yanagida T., Sato H., 2022. Isolation and molecular characterization of Polychromophilus spp. (Haemosporida: Plasmodiidae) from the Asian long-fingered bat (Miniopterus fuliginosus) and Japanese large-footed bat (Myotis macrodactylus) in Japan // Parasitology research. V. 121. № 9. P. 2547–2559. https://doi.org/ 10.1007/s00436-022-07592-7
  37. Ruedi M., Mayer F., 2001. Molecular systematics of bats of the genus Myotis (Vespertilionidae) suggests deterministic ecomorphological convergences // Molecular phylogenetics and evolution. V. 21. № 3. P. 436–448. https://doi.org/ 10.1006/mpev.2001.1017
  38. Ruedi M., Stadelmann B., Gager Y., Douzery E.J., Francis C.M., et al., 2013. Molecular phylogenetic reconstructions identify East Asia as the cradle for the evolution of the cosmopolitan genus Myotis (Mammalia, Chiroptera) // Molecular Phylogenetics and Evolution. V. 69. № 3. P. 437–49. https://doi.org/ 10.1016/j.ympev.2013.08.01
  39. Sakai T., Kikkawa Y., Tsuchiya K., Harada M., Kanoe M. et al., 2003. Molecular phylogeny of Japanese Rhinolophidae based on variations in the complete sequence of the mitochondrial cytochrome b gene // Genes & genetic systems. V. 78. № 2. P. 179–189. https://doi.org/ 10.1266/ggs.78.179
  40. Schmitz A., Riesner D., 2006. Purification of nucleic acids by selective precipitation with polyethylene glycol 6000 // Analytical biochemistry. V. 354. № 2. P. 311–313. https://doi.org/ 10.1016/j.ab.2006.03.014
  41. Tamura K., Stecher G., Kumar S., 2021. MEGA11: Molecular Evolutionary Genetics Analysis version 11 // Molecular Biology and Evolution. V. 38. P. 3022–3027.
  42. Tsytsulina K., Dick M.H., Maeda K., Masuda R., 2012. Systematics and phylogeography of the steppe whiskered bat Myotis aurascens Kuzyakin, 1935 (Chiroptera, Vespertilionidae). Russian Journal of Theriology. V. 11. № 1. P. 1–20.
  43. Wang L., Jiang T.L., Sun K.P., Wang Y.X., Tiunov M.P., Feng J., 2010. Morphological description and taxonomical status of Myotis petax // Acta Zootaxonomica Sinica. V. 35. № 2. P. 360–365.
  44. Yoon M.H., 2010. Vertebrate fauna of Korea. V. 5(1). (Chordata: Fertebrata: Mammalia: Theria: Chiroptera) Bats. National Institute of Biological Resources. Incheon. 123 p.
  45. Yoshiyuki M.A, 1989. Systematic study of the Japanese Chiroptera. Tokyo: National Science Museum. 242 p.
  46. Zhang Z., Tan X., Sun K., Liu S., Xu L., Feng J., 2009. Molecular systematics of the Chinese Myotis (Chiroptera, Vespertilionidae) inferred from cytochrome-b sequences // Mammalia. V. 73. № 4. P. 323–330. https://doi.org/ 10.1515/MAMM.2009.058
  47. Zhao G., Krishnamurthy S., Cai Z., Popov V.L., Travassos da Rosa A.P. et al., 2013. Identification of Novel Viruses Using VirusHunter – an Automated Data Analysis Pipeline // PLoS ONE. V. 8. № 10. P. e78470. https://doi.org/ 10.1371/journal.pone.0078470

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences