Поиск нейрофизиологических механизмов конфигурационного обучения

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Конфигурационным обучением называют такую форму ассоциативного обучения, при которой условным стимулом выступает целостный комплекс стимульных элементов, а не отдельные стимулы или их изолированные свойства. Для успешного решения задачи такого ассоциативного обучения требуется холистический анализ всей конфигурации в целом. Возможность анализировать не только отдельные физические аспекты стимула или отдельные объекты зрительной сцены, но и их целостные комбинации дает существенные эволюционные преимущества, поскольку часто конфигурации обладают существенно большей предсказательной силой в сравнении с отдельными элементами или признаками стимула. Более того, возможность холистического анализа комбинаций элементов или признаков стимульного поля может считаться начальным, примитивным проявлением сознания. В настоящем обзоре мы рассмотрим историю разработки концепции конфигурационного обучения, основные методические пути исследования и имеющиеся на настоящий момент нейрофизиологические данные о предполагаемых нейрональных основах этого феномена. Наиболее интересными нам представляются исследования процессов конфигурационного обучения у человека с помощью современных методов нейровизуализации, поскольку они дают возможность заглянуть в работу целостного мозга. В заключение мы рассмотрим, какие проблемы в имеющихся исследованиях должны быть преодолены в будущем, чтобы обеспечить более полное понимание нейрофизиологии феномена конфигурационного обучения.

Полный текст

Доступ закрыт

Об авторах

Б. В. Чернышев

Московский государственный университет им. М.В. Ломоносова; Институт перспективных исследований мозга, Московский государственный университет им. М.В. Ломоносова; Центр нейрокогнитивных исследований (МЭГ-центр), Московский государственный психолого-педагогический университет

Автор, ответственный за переписку.
Email: b_chernysh@mail.ru

кафедра высшей нервной деятельности

Россия, Москва; Москва; Москва

В. Л. Ушаков

Институт перспективных исследований мозга, Московский государственный университет им. М.В. Ломоносова; НИЯУ МИФИ; ГБУЗ “Психиатрическая клиническая больница № 1 им. Н.А. Алексеева Департамента здравоохранения города Москвы”

Email: b_chernysh@mail.ru
Россия, Москва; Москва; Москва

Л. А. Позняк

Центр нейрокогнитивных исследований (МЭГ-центр), Московский государственный психолого-педагогический университет

Email: b_chernysh@mail.ru
Россия, Москва

Список литературы

  1. Ивашкина О.И., Торопова К.А., Рощина М.А., Анохин К.В. Формирование и извлечение ассоциативной памяти на комплексный сигнал у мышей: специфическое участие нейронов области СА1 гиппокампа. Журнал высшей нервной деятельности им. И.П. Павлова. 2020. 70 (3): 327–341.
  2. Павлов И.П. Полное собрание трудов. В 5 томах. М.-Л.: Изд-во АН СССР, 1949.
  3. Палладин А. Образование искусственных условных рефлексов из суммы раздражений. Труды общества русских врачей в СПб. 1906. 73: 393.
  4. Перельцвейг И.Я. Материалы к учению об условных рефлексах. Диссертация. СПб, 1907.
  5. Разоренова А.М., Скавронская В.В., Тюленев Н.Б., Рытикова А.М., Чернышев Б.В. Может ли научение новым словам в слуховой модальности вести к быстрому формированию пластических перестроек в коре больших полушарий у взрослых? Современная зарубежная психология. 2020. 9 (2): 46–56.
  6. Acheson D.T., Gresack J.E., Risbrough V.B. Hippocampal dysfunction effects on context memory: Possible etiology for posttraumatic stress disorder. Neuropharma cology. 2012. 62 (2): 674–685.
  7. Aggleton J.P., Sanderson D.J., Pearce J.M. Structural learning and the hippocampus. Hippocampus. 2007. 17 (9): 723–734.
  8. Albasser M.M., Dumont J.R., Amin E., Holmes J.D., Horne M.R., Pearce J.M., Aggleton J.P. Association rules for rat spatial learning: The importance of the hippocampus for binding item identity with item location. Hippocampus. 2013. 23 (12): 1162–1178.
  9. Alvarado M.C., Rudy J.W. Some properties of configural learn ing: An investigation of the transverse-patterning problem. Journal of Experimental Psychology: Animal Behavior Processes. 1992. 18 (2): 145–153.
  10. Alvarado M.C., Rudy J.W. A comparison of “configural” discrimination problems: Implications for understanding the role of the hippocampal formation in learning and memory. Psychobiology. 1995. 23 (3): 178–184.
  11. Alvarez R.P., Biggs A., Chen G., Pine D.S., Grillon C. Contextual fear conditioning in humans: cortical-hippocampal and amygdala contributions. The Journal of Neuroscience. 2008. 28 (24): 6211–6219.
  12. Anagnostaras S.G., Gale G.D., Fanselow M.S. Hippocampus and contextual fear conditioning: Recent controversies and advances. Hippocampus. 2001. 11 (1): 8–17.
  13. Andreatta M., Glotzbach-Schoon E., Mühlberger A., Schulz S.M., Wiemer J., Pauli P. Initial and sustained brain responses to contextual conditioned anxiety in humans. Cortex. 2015. 63: 352–363.
  14. Baeuchl C., Meyer P., Hoppstädter M., Diener C., Flor H. Contextual fear conditioning in humans using feature-identical contexts. Neurobiology of Learning and Memory. 2015. 121: 1–11.
  15. Bisby J.A., Burgess N., Brewin C.R. Reduced memory coherence for negative events and its relationship to posttraumatic stress disorder. Current Directions in Psychological Science. 2020. 29 (3): 267–272.
  16. Brincat S.L., Miller E.K. Frequency-specific hippocampal-prefrontal interactions during associative learning. Nature neuroscience. 2015. 18 (4): 576–581.
  17. Bronfman Z.Z., Ginsburg S., Jablonka E. The transition to minimal consciousness through the evolution of associative learning. Frontiers in Psychology. 2016. 7: 1954.
  18. Büchel C., Morris J., Dolan R.J., Friston K.J. Brain systems mediating aversive conditioning: an event-related fMRI study. Neuron. 1998. 20 (5): 947–957.
  19. Cashdollar N., Malecki U., Rugg-Gunn F.J., Duncan J.S., Lavie N., Duzel E. Hippocampus-dependent and -independent theta-networks of active maintenance. Proceedings of the National Academy of Sciences. 2009. 106 (48): 20493–20498.
  20. Chang S.-D., Liang K.C. The hippocampus integrates context and shock into a configural memory in contextual fear conditioning. Hippocampus. 2017. 27 (2): 145–155.
  21. Cohen L., Dehaene S., Naccache L., Lehéricy S., Dehaene-Lambertz G., Hénaff M.-A., Michel F. The visual word form area: Spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. Brain. 2000. 123 (2): 291–307.
  22. Corcoran K.A., Maren S. Hippocampal inactivation disrupts contextual retrieval of fear memory after extinction. The Journal of Neuroscience. 2001. 21 (5): 1720–1726.
  23. Davis M., Whalen P.J. The amygdala: vigilance and emotion. Mol. Psychiatry. 2001. 6 (1): 13–34.
  24. Davis M.H., Gaskell M.G. A complementary systems account of word learning: neural and behavioural evidence. Philosophical Transactions of the Royal Society B-Biological Sciences. 2009. 364 (1536): 3773–3800.
  25. Debiec J., Diaz-Mataix L., Bush D.E.A., Doyère V., LeDoux J.E. The selectivity of aversive memory reconsolidation and extinction processes depends on the initial encoding of the Pavlovian association. Learning & Memory. 2013. 20 (12): 695–699.
  26. Dumont J., Petrides M., Sziklas V. Functional dissociation between fornix and hippocampus in spatial conditional learning. Hippocampus. 2007. 17 (12): 1170–1179.
  27. Duncan K., Doll B.B., Daw N.D., Shohamy D. More than the sum of its parts: a role for the hippocampus in configural reinforcement learning. Neuron. 2018. 98 (3): 645–657.
  28. Eichenbaum H. The hippocampus: The shock of the new. Curr. Biol. 1999. 9 (13): R482–R484.
  29. Eichenbaum H. Hippocampus: cognitive processes and neural representations that underlie declarative memory. Neuron. 2004. 44 (1): 109–120.
  30. Eichenbaum H., Cohen N.J. Can we reconcile the declarative memory and spatial navigation views on hippocampal function? Neuron. 2014. 83 (4): 764–770.
  31. Fanselow M.S. Contextual fear, gestalt memories, and the hippocampus. Behavioural Brain Research. 2000. 110 (1): 73–81.
  32. Fanselow M.S., Poulos A.M. The Neuroscience of Mammalian Associative Learning. Annual Review of Psychology. 2005. 56 (1): 207–234.
  33. Feinberg T.E., Mallatt J. The nature of primary consciousness. A new synthesis. Consciousness and Cognition. 2016. 43: 113–127.
  34. Fiebig F., Lansner A. Memory consolidation from seconds to weeks: a three-stage neural network model with autonomous reinstatement dynamics. Frontiers in Computational Neuroscience. 2014. 8: 64.
  35. Friston K.J. The free-energy principle: a unified brain theory? Nature Reviews Neuroscience. 2010. 11 (2): 127–138.
  36. Fuentemilla L., Penny W.D., Cashdollar N., Bunzeck N., Düzel E. Theta-coupled periodic replay in working memory. Current Biology. 2010. 20 (7): 606–612.
  37. Gaskell M.G., Dumay N. Lexical competition and the acquisition of novel words. Cognition. 2003. 89 (2): 105–132.
  38. Gastaldi C., Schwalger T., De Falco E., Quiroga R.Q., Gerstner W. When shared concept cells support associations: Theory of overlapping memory engrams. PLOS Computational Biology. 2022. 17 (12): e1009691.
  39. Ghazanfar A.A., Schroeder C.E. Is neocortex essentially multisensory? Trends Cogn. Sci. 2006. 10 (6): 278–285.
  40. Gilbertson M.W., Williston S.K., Paulus L.A., Lasko N.B., Gurvits T.V., Shenton M.E. et al. Configural cue performance in identical twins discordant for posttraumatic stress disorder: theoretical implications for the role of hippocampal function. Biological Psychiatry. 2007. 62 (5): 513–520.
  41. Ginsburg S., Jablonka E. The evolution of the sensitive soul: learning and the origins of consciousness. Cambridge, MA: MIT Press, 2019.
  42. Glenn D.E., Risbrough V.B., Simmons A.N., Acheson D.T., Stout D.M. The future of contextual fear learning for PTSD Research: a methodological review of neuroimaging studies. Behavioral Neurobiology of PTSD / Vermetten E. et al. Cham: Springer International Publishing, 2018. 207–228.
  43. Gluck M.A., Myers C.E. Hippocampal mediation of stimulus representation: A computational theory. Hippocampus. 1993. 3 (4): 491–516.
  44. Goldfarb E.V., Blow T., Dunsmoor J.E., Phelps E.A. Elemental and configural threat learning bias extinction generalization. Neurobiology of Learning and Memory. 2021. 180. 107405.
  45. Griffiths B.J., Jensen O. Gamma oscillations and episodic memory. Trends in Neurosciences. 2023. 46 (10): 832–846.
  46. Gross C.G. Genealogy of the “Grandmother Cell”. The Neuroscientist. 2002. 8 (5): 512–518.
  47. Hannula D.E., Tranel D., Cohen N.J. The long and the short of it: relational memory impairments in amnesia, even at short lags. The Journal of Neuroscience. 2006. 26 (32): 8352–8359.
  48. Ison Matias J., Quian Quiroga R., Fried I. Rapid encoding of new memories by individual neurons in the human brain. Neuron. 2015. 87 (1): 220–230.
  49. Jones C.E., Ringuet S., Monfils M.-H. Learned together, extinguished apart: reducing fear to complex stimuli. Learning & Memory. 2013. 20 (12): 674–685.
  50. Kanwisher N., McDermott J., Chun M.M. The fusiform face area: a module in human extrastriate cortex specialized for face perception. The Journal of Neuroscience. 1997. 17 (11): 4302–4311.
  51. Kheirbek Mazen A., Drew Liam J., Burghardt Nesha S., Costantini Daniel O., Tannenholz L., Ahmari Susanne E. et al. Differential control of learning and anxiety along the dorsoventral axis of the dentate gyrus. Neuron. 2013. 77 (5): 955–968.
  52. Kimchi R. The role of wholistic/configural properties versus global properties in visual form perception. Perception. 1994. 23 (5): 489–504.
  53. Knapska E., Macias M., Mikosz M., Nowak A., Owczarek D., Wawrzyniak M. et al. Functional anatomy of neural circuits regulating fear and extinction. Proceedings of the National Academy of Sciences. 2012. 109 (42): 17093–17098.
  54. Kolibius L.D., Roux F., Parish G., Ter Wal M., Van Der Plas M., Chelvarajah R. et al. Hippocampal neurons code individual episodic memories in humans. Nature Human Behaviour. 2023.
  55. Kozunov V.V., West T.O., Nikolaeva A.Y., Stroganova T.A., Friston K.J. Object recognition is enabled by an experience-dependent appraisal of visual features in the brain’s value system. NeuroImage. 2020. 221: 117143.
  56. Kubie J.L., Levy E.R.J., Fenton A.A. Is hippocampal remapping the physiological basis for context? Hippocampus. 2020. 30 (8): 851–864.
  57. Lang S., Kroll A., Lipinski S.J., Wessa M., Ridder S., Christmann C. et al. Context conditioning and extinction in humans: differential contribution of the hippocampus, amygdala and prefrontal cortex. European Journal of Neuroscience. 2009. 29 (4): 823–832.
  58. LeDoux J.E. Emotion circuits in the brain. Annu. Rev. Neurosci. 2000. 23: 155–184.
  59. Maren S., Aharonov G., Fanselow M.S. Neurotoxic lesions of the dorsal hippocampus and Pavlovian fear conditioning in rats. Behavioural Brain Research. 1997. 88 (2): 261–274.
  60. Maren S., Phan K.L., Liberzon I. The contextual brain: implications for fear conditioning, extinction and psychopathology. Nature Reviews Neuroscience. 2013. 14 (6): 417–428.
  61. Marschner A., Kalisch R., Vervliet B., Vansteenwegen D., Büchel C. Dissociable roles for the hippocampus and the amygdala in human cued versus context fear conditioning. The Journal of Neuroscience. 2008. 28 (36): 9030.
  62. Monti J.M., Cooke G.E., Watson P.D., Voss M.W., Kramer A.F., Cohen N.J. Relating hippocampus to relational memory processing across domains and delays. Journal of Cognitive Neuroscience. 2015. 27 (2): 234–245.
  63. Moscovitch M., Gilboa A. Has the concept of systems consolidation outlived its usefulness? Identification and evaluation of premises underlying systems consolidation. Fac Rev. 2022. 11: 33.
  64. Nadel L., Moscovitch M. Memory consolidation, retrograde amnesia and the hippocampal complex. Curr. Opin. Neurobiol. 1997. 7 (2): 217–227.
  65. Novikov N.A., Bryzgalov D.V., Chernyshev B.V. Theta and alpha band modulations reflect error-related adjustments in the auditory condensation task. Frontiers in Human Neuroscience. 2015. 9: 673.
  66. Olsen R.K., Rondina I.R., Riggs L., Meltzer J.A., Ryan J.D. Hippocampal and neocortical oscillatory contributions to visuospatial binding and comparison. Journal of Experimental Psychology: General. 2013. 142 (4): 1335– 1345.
  67. Pearce J.M. A model for stimulus generalization in Pavlovian conditioning. Psychological Review. 1987. 94 (1): 61–73.
  68. Piepers D., Robbins R. A Review and clarification of the terms “holistic,” “configural,” and “relational” in the face perception literature. Frontiers in Psychology. 2012. 3: 559.
  69. Poch C., Fuentemilla L., Barnes G.R., Düzel E. Hippocampal theta-phase modulation of replay correlates with configural-relational short-term memory performance. The Journal of Neuroscience. 2011. 31 (19): 7038–7042.
  70. Pohlack S.T., Nees F., Liebscher C., Cacciaglia R., Diener S.J., Ridder S. et al. Hippocampal but not amygdalar volume affects contextual fear conditioning in humans. Human Brain Mapping. 2012. 33 (2): 478–488.
  71. Pohlack S.T., Nees F., Ruttorf M., Schad L.R., Flor H. Activation of the ventral striatum during aversive contextual conditioning in humans. Biological Psychology. 2012. 91 (1): 74–80.
  72. Pulvermüller F. Brain mechanisms linking language and action. Nature Reviews Neuroscience. 2005. 6 (7): 576–582.
  73. Pulvermüller F. Neural reuse of action perception circuits for language, concepts and communication. Progress in Neurobiology. 2018. 160: 1–44.
  74. Quiroga R.Q. Concept cells: the building blocks of declarative memory functions. Nature Reviews Neuroscience. 2012. 13 (8): 587–597.
  75. Razorenova A.M., Chernyshev B.V., Nikolaeva A.Y., Butorina A.V., Prokofyev A.O., Tyulenev N.B., Stroganova T.A. Rapid cortical plasticity induced by active associative learning of novel words in human adults. Frontiers in Neuroscience. 2020. 14: 895.
  76. Razran G. Studies in configural conditioning: I. Historical and preliminary experimentation. The Journal of General Psychology. 1939. 21 (2): 307–330.
  77. Razran G. Studies in configural conditioning: IV. Gestalt organization and configural conditioning. The Journal of Psychology. 1939. 7 (1): 3–16.
  78. Razran G. Mind in evolution: An East-West synthesis of learned behavior and cognition. Houghton Mifflin, 1971.
  79. Rey H.G., De Falco E., Ison M.J., Valentin A., Alarcon G., Selway R. et al. Encoding of long-term associations through neural unitization in the human medial temporal lobe. Nature Communications. 2018. 9 (1): 4372.
  80. Rodríguez-Fornells A., Cunillera T., Mestres-Missé A., de DiegoBalaguer R. Neurophysiological mechanisms involved in language learning in adults. Philosophical Transactions of the Royal Society B: Biological Sciences. 2009. 364 (1536). 3711–3735.
  81. Rudy J.W. Context representations, context functions, and the parahippocampal–hippocampal system. Learning & Memory. 2009. 16 (10): 573–585.
  82. Rudy J.W., Huff N.C., Matus-Amat P. Understanding contextual fear conditioning: insights from a two-process model. Neuroscience & Biobehavioral Reviews. 2004. 28 (7): 675–685.
  83. Rudy J.W., Sutherland R.J. Configural association theory and the hippocampal formation: An appraisal and reconfiguration. Hippocampus. 1995. 5 (5): 375–389.
  84. Sakimoto Y., Hattori M., Takeda K., Okada K., Sakata S. Hippocampal theta wave activity during configural and non-configural tasks in rats. Experimental Brain Research. 2013. 225 (2): 177–185.
  85. Sakimoto Y., Mitsushima D. Hippocampal theta activity during stimulus discrimination task. Electroencephalography / Phakkharawat S. Rijeka: IntechOpen, 2017. 11–22.
  86. Sakimoto Y., Okada K., Takeda K., Sakata S. Transient decline in hippocampal theta activity during the acquisition process of the negative patterning task. PLOS ONE. 2013. 8 (7): e70756.
  87. Sakimoto Y., Sakata S. The transient decline in hippocampal theta power during response inhibition in a positive patterning task. NeuroReport. 2015. 26 (14): 833–837.
  88. Sanderson D.J., Pearce J.M., Kyd R.J., Aggleton J.P. The importance of the rat hippocampus for learning the structure of visual arrays. European Journal of Neuroscience. 2006. 24 (6): 1781–1788.
  89. Sehlmeyer C., Schöning S., Zwitserlood P., Pfleiderer B., Kircher T., Arolt V., Konrad C. Human fear conditioning and extinction in neuroimaging: a systematic review. PLOS ONE. 2009. 4 (6): e5865.
  90. Squire L.R., Alvarez P. Retrograde amnesia and memory consolidation: a neurobiological perspective. Current Opinion in Neurobiology. 1995. 5 (2): 169–177.
  91. Squire L.R., Genzel L., Wixted J.T., Morris R.G. Memory consolidation. Cold Spring Harbor Perspectives in Biology. 2015. 7 (8).
  92. Stout D.M., Glenn D.E., Acheson D.T., Simmons A.N., Risbrough V.B. Characterizing the neural circuitry associated with configural threat learning. Brain Research. 2019. 1719: 225–234.
  93. Stout D.M., Glenn D.E., Acheson D.T., Spadoni A.D., Risbrough V.B., Simmons A.N. Neural measures associated with configural threat acquisition. Neurobiology of Learning and Memory. 2018. 150: 99–106.
  94. Sutherland R.J., Rudy J.W. Configural association theory: The role of the hippocampal formation in learning, memory, and amnesia. Psychobiology. 1989. 17 (2): 129–144.
  95. Tonegawa S., Morrissey M.D., Kitamura T. The role of engram cells in the systems consolidation of memory. Nature Reviews Neuroscience. 2018. 19 (8): 485–498.
  96. Urcelay G.P., Miller R.R. The functions of contexts in associative learning. Behavioural Processes. 2014. 104: 2–12.
  97. Watson P.D., Voss J.L., Warren D.E., Tranel D., Cohen N.J. Spatial reconstruction by patients with hippocampal damage is dominated by relational memory errors. Hippocampus. 2013. 23 (7): 570–580.
  98. Weinberger N.M. Specific long-term memory traces in primary auditory cortex. Nat. Rev. Neurosci. 2004. 5 (4): 279–290.
  99. Yadav R., Hillman B.G., Gupta S.C., Suryavanshi P., Bhatt J.M., Pavuluri R. et al. Deletion of glutamate delta-1 receptor in mouse leads to enhanced working memory and deficit in fear conditioning. PLOS ONE. 2013. 8 (4): e60785.
  100. Yoshida M., Chinzorig C., Matsumoto J., Nishimaru H., Ono T., Yamazaki M., Nishijo H. Configural cues associated with reward elicit theta oscillations of rat retrosplenial cortical neurons phase-locked to LFP theta cycles. Cerebral Cortex. 2021. 31 (5): 2729–2741.
  101. Zeliony G. Contribution a l’analyse des excitants complexes des reflexes conditionnels. Institut Impérial de médecine expérimentale, 1910.
  102. Zheng J., Stevenson R.F., Mander B.A., Mnatsakanyan L., Hsu F.P.K., Vadera S. et al. Multiplexing of theta and alpha rhythms in the amygdala-hippocampal circuit supports pattern separation of emotional information. Neuron. 2019. 102 (4): 887–898.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024