Learning-dependent BDNF levels in the rat medial prefrontal cortex: approach vs. withdrawal

封面

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

This article presents a comparison of changes in molecular markers of systemogenesis related to behavioral motivation: approach versus avoidance, differing in their stress levels. We conducted an immunohistochemical study of brain-derived neurotrophic factor (BDNF) in the medial prefrontal cortex of adult Long-Evans rats. Two groups were trained in a bar-pressing task: 1) to activate a food dispenser and obtain food (approach); 2) to terminate a shock and avoid pain (avoidance). The avoidance group showed significantly fewer BDNF-immunopositive cells in the prelimbic and infralimbic prefrontal cortex compared to the approach group. Furthermore, BDNF levels correlated with individual differences in anxiety and exploratory activity. We conclude that the medial prefrontal cortex is involved in both approach and avoidance behaviors, but to a significantly lesser extent in avoidance. The potential role of stress-induced neuroinflammation in these differences is discussed.

全文:

受限制的访问

作者简介

A. Bulava

Institute of Psychology of the Russian Academy of Sciences; Moscow Institute of Psychoanalysis

编辑信件的主要联系方式.
Email: bulavaai@ipran.ru
俄罗斯联邦, Moscow; Moscow

Yu. Alexandrov

Institute of Psychology of the Russian Academy of Sciences

Email: bulavaai@ipran.ru
俄罗斯联邦, Moscow

参考

  1. Александров Ю.И. Дифференциация и развитие. Теория развития: Дифференционно-интеграционная парадигма. Сост. Н.И. Чуприкова. М.: Языки славянских культур. 2009: 17–28.
  2. Александров Ю.И., Булава А.И., Бахчина А.В., Гаврилов В.В., Колбенева М.Г., Кузина Е.А., Знаменская И.И., Русак И.И., Горкин А.Г. Стресс и индивидуальное развитие. Журн. высш. нервн. деят. им. И.П. Павлова. 2022. 72 (4): 437–456.
  3. Анохин К.В. Молекулярные сценарии консолидации долговременной памяти. Журн. высш. нервн. деят. им. И.П. Павлова. 1997. 47(2): 261–279.
  4. Анохин П.К. Системогенез как общая закономерность эволюционного процесса. Бюлл. эксп. биол. и мед. 1948. 26(2): 81–99.
  5. Берeзова И.В., Шишкина Г.Т., Калинина Т.С., Дыгало Н.Н. Поведение в тесте вынужденного плавания и экспрессия в мозге крыс генов нейротрофического фактора (BDNF) и антиапоптозного белка Bcl-xl. Журн. высш. нервн. деят. им. И.П. Павлова. 2011. 61(3): 332–339.
  6. Бородинова А.А., Саложин С.В. Различия биологических функций BDNF и proBDNF в центральной нервной системе. Журн. высш. нервн. деят. им. И.П. Павлова. 2016. 66(1): 3–3.
  7. Булава А.И. Cистемогенез: роль транскрипционных факторов. Новые тенденции и перспективы психологической науки. Отв. ред. А.Л. Журавлев, А.В. Юревич. М.: Институт психологии РАН, 2019. 583–593. ISBN978-5-9270-0393-8
  8. Булава А.И., Волков С.В., Александров Ю.И. Электродная платформа для электроболевой стимуляции животных. Патент на изобретение от 28.12.2017. RU2675174C1. 2017.
  9. Булава А.И., Гринченко Ю.В. Паттерны активаций субрегионов гиппокампа в ситуациях аверсивного и неаверсивного научения. Биомедицинская радиоэлектроника. М.: Радиотехника. 2017. 2: 5–8.
  10. Булава А.И., Назарова А.Г., Гуляева Н.В., Александров Ю.И. Системогенез при психотравмирующем опыте. Способности и ментальные ресурсы человека в мире глобальных перемен. Отв. ред. А.Л. Журавлев, М.А. Холодная, П.А. Сабадош. М.: Институт психологии РАН, 2020. 1527–1537.
  11. Гаврилов В.В., Онуфриев М.В., Моисеева Ю.В., Александров Ю.И., Гуляева Н.В. Хронические социальные стрессы изоляции и скученности по-разному влияют на инструментальное поведение и состояние гипоталамо-гипофизарно-адренокортикальной системы у крыс. Журн. высш. нервн. деят. им. И.П. Павлова. 2021. 71 (5): 710–719.
  12. Сварник О.Е., Анохин К.В., Александров Ю.И. Распределение поведенчески специализированных нейронов и экспрессия транскрипционного фактора c-Fos в коре головного мозга крыс при научении. Журн. высш. нервн. деят. им. И.П. Павлова. 2001. 51(6): 758–761.
  13. Швырков В.Б. Системная детерминация активности нейронов в поведении. Успехи физиологических наук. 1983. 14(1): 45–66.
  14. Aktas O., Smorodchenko A., Brocke S., Infante-Duarte C., Topphoff U.S., Vogt J., Prozorovski T., Meier S., Osmanova V., Pohl E., Bechmann I. Neuronal damage in autoimmune neuroinflammation mediated by the death ligand TRAIL. Neuron. 2005. 46(3): 421–432.
  15. Alexandrov Y.I., Klucharev V., Sams M. Effect of emotional context in auditory-cortex processing. International journal of psychophysiology. 2007. 65(3): 261–271.
  16. Alexandrov Y.I., Pletnikov M.V. Neuronal metabolism in learning and memory: the anticipatory activity perspective. Neuroscience and Biobehavioral Reviews. 2022. 137: 104664: 1–9.
  17. Alexandrov Y.I., Sams M.E. Emotion and consciousness: Ends of a continuum. Cognitive brain research. 2005. 25(2): 387–405.
  18. Alexandrov Yu.I., Sozinov A.A., Svarnik O.E., Gorkin A.., Kuzina E.A., Gavrilov V.V. Neuronal bases of systemic organization of behavior. Advances in Neurobiology. In: Cheung-Hoi Yu A., Li L. (eds.) Systems Neuroscience. Springer, Cham. 2018. 21: 1–33.
  19. Antunes M., Biala G. The novel object recognition memory: neurobiology, test procedure, and its modifications. Cognitive processing. 2012. 13(2): 93–110.
  20. Arnsten A.F.T., Raskind M.A., Taylor F.B., Connor D.F. The effects of stress exposure on prefrontal cortex: Translating basic research into successful treatments for post-traumatic stress disorder. Neurobiology of Stress. 2015. 1: 89–99.
  21. Bali A., Jaggi A.S. Electric foot shock stress: a useful tool in neuropsychiatric studies. Reviews in the Neurosciences. 2015. 26(6): 655–677.
  22. Belleau E.L., Treadway M.T., Pizzagalli D.A. The impact of stress and major depressive disorder on hippocampal and medial prefrontal cortex morphology. Biological psychiatry 2019. 85(6): 443–453.
  23. Belovicova K., Bogi E., Csatlosova K., Dubovicky M. Animal tests for anxiety-like and depression-like behavior in rats. Interdisciplinary toxicology. 2017. 10(1): 40–43.
  24. Bulava A.I., Osipova Z.A., Arapov V.V., Gorkin A.G., Alexandrov I.O., Grechenko T.N., Alexandrov Y.I. The Influence of Anxiety and Exploratory Activity on Learning in Rats: Mismatch-Induced c-Fos Expression in Deep and Superficial Cortical Layers. Advances in Neural Computation, Machine Learning, and Cognitive Research VII. Studies in Computational Intelligence. Springer, Cham. 2023. 1120: 323–333.
  25. Bulava A.I., Svarnik O.E., Alexandrov Yu.I. Differential forebrain c-fos expression induced by novelty after chronic stress. 24th Multidisciplinary International Neuroscience and Biological Psychiatry Conference. Stress, Brain and Behavior. 2017. 7: 28.
  26. Bulava A.I., Svarnik O.E., Alexandrov Yu.I. Reconsolidation of the previous memory: Decreased cortical activity during acquisition of an active avoidance task as compared to an instrumental operant food-acquisition task. 10th FENS Forum of Neuroscience. Abstracts. 2016: P044609.
  27. Bulava A.I., Volkov S.V., Alexandrov Y.I. A Novel Avoidance Test Setup: Device and Exemplary Tasks. Studies in Computational Intelligence. Springer, Cham. 2020. 856: 159–164.
  28. Gao X., Smith G.M., Chen J. Impaired dendritic development and synaptic formation of postnatal-born dentate gyrus granular neurons in the absence of brain-derived neurotrophic factor signaling. Exp Neurol. 2009. 215(1):178–190.
  29. Gehler S., Gallo G., Veien E., Letourneau P.C. p75 neurotrophin receptor signaling regulates growth cone filopodial dynamics through modulating RhoA activity. J. Neurosci. 2004. 24(18): 4363–4372.
  30. Gilbertson M.W., Shenton M.E., Ciszewski A., Kasai K., Lasko N.B., Orr S.P., Pitman R.K. Smaller hippocampal volume predicts pathologic vulnerability to psychological trauma // Nat Neurosci. 2002. 5(11): 1242–1247.
  31. Goff D.C. Future perspectives on the treatment of cognitive deficits and negative symptoms in schizophrenia. World Psychiatry. 2013. 12(2): 99–107.
  32. Gómez-Pinilla F., Huie J.R., Ying Z., Ferguson A.R., Crown E.D., Baumbauer K.M., Edgerton V.R., Grau J.W. BDNF and learning: Evidence that instrumental training promotes learning within the spinal cord by up-regulating BDNF expression. Neuroscience. 2007. 148(4): 893–906.
  33. Gonzalez A., Moya-Alvarado G., Gonzalez-Billaut C., Bronfman F.C. Cellular and molecular mechanisms regulating neuronal growth by brain-derived neurotrophic factor (BDNF). Cytoskeleton (Hoboken). 2016. 73(10): 612–628.
  34. Gulyaeva N.V. Biochemical Mechanisms and Translational Relevance of Hippocampal Vulnerability to Distant Focal Brain Injury: The Price of Stress Response. Biochemistry (Mosc). 2019. 84(11): 1306-1328.
  35. doi: 10.1134/S0006297919110087.
  36. Gulyaeva N.V. Stress-associated molecular and cellular hippocampal mechanisms common for epilepsy and comorbid depressive disorders. Biochemistry. 2021. 86(6): 641–656.
  37. Jauhar S., Fortea L., Solanes A., Albajes-Eizagirre A., McKenna P.J., Radua J. Brain activations associated with anticipation and delivery of monetary reward: A systematic review and meta-analysis of fMRI studies. PLoS One. 2021. 16(8): e0255292.
  38. Kasai K., Yamasue H., Gilbertson M.W., Shenton M.E., Rauch S.L., Pitman R.K. Evidence for acquired pregenual anterior cingulate gray matter loss from a twin study of combat-related posttraumatic stress disorder. Biological psychiatry. 2008. 63(6): 550–556.
  39. Kim S.H., Yoon H., Kim H., Hamann S. Individual differences in sensitivity to reward and punishment and neural activity during reward and avoidance learning. Social cognitive and affective neuroscience. 2015. 10(9): 1219–1227.
  40. Lee J., Duan W., Mattson M.P. Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice. J. Neurochem. 2002. 82(6): 1367–1375.
  41. Oakley D.A. Learning with food reward and shock avoidance in neodecorticate rats. Experimental Neurology. 1979. 63(3): 627–642.
  42. Ossewaarde L., Qin S., van Marle H.J.F., van Wingen G.A., Fernández G., Hermans E.J. Stress-induced reduction in reward-related prefrontal cortex function. NeuroImage. 2011. 55: 345–352.
  43. Paxinos G., Watson C., Carrive P., Kirkcaldie M.T.K., Ashwell K. Chemoarchitectonic Atlas of the Rat Brain. Elsevier. USA. 2009. 375.
  44. Perica M.I., Luna B. Impact of stress on excitatory and inhibitory markers of adolescent cognitive critical period plasticity. Neuroscience & Biobehavioral Reviews. 2023: 105378.
  45. Qiu P., Jiang J., Liu Z., Cai Y., Huang T., Wang Y., Liu Q., Nie Y., Liu F., Cheng J., Li Q. BMAL1 knockout macaque monkeys display reduced sleep and psychiatric disorders. National Science Review. 2019. 1: 87–100.
  46. Ribeiro F.F., Xapelli S. Intervention of brain-derived neurotrophic factor and other neurotrophins in adult neurogenesis. Recent Advances in NGF and Related Molecules: The Continuum of the NGF «Saga». 2021: 95–115.
  47. Sapolsky R.M., Romero L.M., Munck A.U. How Do Glucocorticoids Influence Stress Responses? Integrating Permissive, Suppressive, Stimulatory, and Preparative Actions. Endocrine Reviews. 2000. 21(1): 55–89.
  48. Sawchenko P.E., Brown E.R., Chan R.K., Ericsson A., Li H.Y., Roland B.L., Kovacs K.J. The paraventricular nucleus of the hypothalamus and the functional neuroanatomy of visceromotor responses to stress. Prog. Brain Res. 1996. 107: 201–222.
  49. Schwabe L., Wolf O.T. Stress and multiple memory systems: from «thinking» to «doing». Trends in Cognitive Sciences. 2013. 17(2): 60–68.
  50. Snapyan M., Lemasson M., Brill M.S., Blais M., Massouh M., Ninkovic J., Gravel C., Berthod F., Götz M., Barker P.A., Parent A., Saghatelyan A. Vasculature guides migrating neuronal precursors in the adult mammalian forebrain via brain-derived neurotrophic factor signaling. J. Neurosci. 2009. 29(13): 4172–4188.
  51. Sozinov A.A., Laukka S.J., Tuominen T., Siipo A., Nopanen M., Alexandrov Y.I. Transfer of simple task learning is different in approach and withdrawal contexts. Procedia-Social and Behavioral Sciences. 2012. 69: 449–457.
  52. Steel A., Silson E.H., Stagg C.J., Baker C.I. Differential impact of reward and punishment on functional connectivity after skill learning. Neuroimage. 2019. 189: 95–105.
  53. Teicher M.H., Anderson C.M., Polcari A. Childhood maltreatment is associated with reduced volume in the hippocampal subfields CA3, dentate gyrus, and subiculum. Proc Natl Acad Sci USA. 2012. 109(9): E563–E572.
  54. Tyler W.J., Alonso M., Bramham C.R., Pozzo-Miller L D. From acquisition to consolidation: on the role of brain-derived neurotrophic factor signaling in hippocampal dependent learning. Learn. Mem. 2002. 9(5): 224–237.
  55. Van der Werff S.J., van den Berg S.M., Pannekoek J.N., Elzinga B.M., van der Wee N.J. Neuroimaging resilience to stress: a review. Frontiers in behavioral neuroscience. 2013. 7: 39.
  56. Zagrebelsky M., Tacke C., Korte M. BDNF signaling during the lifetime of dendritic spines. Cell and Tissue Research. 2020. 382: 185–199.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Experimental timeline. Behavioral tests – the open-field and the novel object recognition modified tests. Instrumental learning – animals were trained food-acquisition (Group 1) or footshock-avoidance (Group 2) operant behavior. Pictures from the actual video recording during acquisition of operant behavior (food/footshock). IHC-Fr HRP – frozen brain sections immunoperoxidase staining of BDNF or NeuN.

下载 (119KB)
3. Fig. 2. (a) – schematic diagram of the rat brain (3.72 mm from Bregma), sagittal and frontal planes, region of interest are indicated; (б) – representative microphotographs of IHC-prepared tissue (HRP DAB) show NeuN and BDNF stained areas of medial prefrontal cortex (PrL), including negative controls (contr-, IHC excluding primary antibodies). Scale bar =200 µm; (в) – the relationship between learning and level of BDNF in rat neocortex. M ± SEM are shown. Appetitive – instrumental food-obtaining behavior (n = 13); Avoidance – instrumental footshock-avoidance behavior (n = 11); Int.contr – intact animals (n = 6). Kruskal–Wallis, PrL H(N30) = 19.6, p = 0.0001; IL H(N30) = 20.4, p = 0.00001. Mann–Whitney, *Z = 2.95, p = 0.003; **Z = 3.15, p = 0.001; (г) – graphs showing the correlations obtained between behavioral variables, such as freeze and vertical activity and the number BDNF-positive cells of the medial prefrontal cortex. Spearman, Freeze +PrL r = -0.56, p = 0.007; ++IL r = -0.53, p = 0.012. Vertical activity #PrL r = 0.78, p = 0.00002; ##IL r = 0.77, p = 0.00003.

下载 (298KB)

版权所有 © Russian Academy of Sciences, 2025