Motion onset responses elicited by sound stimuli with interaural level differences

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We studied the evoked responses of the human brain elicited by the onset of sound motion (motion-onset response, MOR). Sound motion was created by means of linear changes in the interaural level differences (ILD). The structure of the ILD-related MOR was similar to that reported in the studies which used changes in the interaural time delay. The amplitude of the cN1 component increased with sound velocity, regardless of motion direction, and the cP2 deflection increased only in the case of motion from the center to the periphery. The amplitude of both cP1 and cN2 components did not depend on motion velocity. Centrifugal motion evoked a stronger MOR than centripetal motion, which corresponds to the hemifield model of lateralization (i.e. opponent channels model). Our findings suggest that motion direction (towards the center or towards the periphery) was reflected in the MOR potential in a wider time interval than velocity.

Full Text

Restricted Access

About the authors

L. B. Shestopalova

Pavlov Institute of Physiology, RAS

Author for correspondence.
Email: shestopalovalb@infran.ru
Russian Federation, Saint-Petersburg

Е. А. Petropavlovskaia

Pavlov Institute of Physiology, RAS

Email: shestolido@mail.ru
Russian Federation, Saint-Petersburg

References

  1. Варфоломеев А.Л., Старостина Л.В. Слуховые вызванные потенциалы человека при иллюзорном движении звукового образа. Росс. Физиол. Журн. им. Сеченова. 2006. 92 (9): 1046–1057.
  2. Доброхотова Т.А., Брагина Н.Н. Левши. М.: Книга, 1994. 232 с.
  3. Семенова В.В., Шестопалова Л.Б., Петропавловская Е.А., Саликова Д.А., Никитин Н.И. Латентность вызванного потенциала как показатель интегрирования акустической информации о движении звука. Физиология человека. 2022. 48 (4): 57–68.
  4. Шестопалова Л.Б., Петропавловская Е.А., Саликова Д.А., Семенова В.В. Влияние слуховой пространственной маскировки на межполушарную асимметрию вызванных ответов. Физиология человека. 2023. 49 (4): 16–29.
  5. Шестопалова Л.Б., Петропавловская Е.А., Саликова Д.А., Семенова В.В., Никитин Н.И. Слуховые вызванные потенциалы человека в условиях пространственной маскировки. Физиология человека. 2022. 48 (6): 32–43.
  6. Шестопалова Л.Б., Петропавловская Е.А., Семенова В.В., Никитин Н.И. Ритмическая активность мозга человека, связанная с движением звуковых стимулов. Журнал высшей нервной деятельности им. И.П. Павлова. 2020. 70 (5): 616–634.
  7. Altmann C.F., Ueda R., Bucher B., Furukawa S., Ono K., Kashino M. et al. Trading of dynamic interaural time and level difference cues and its effect on the auditory motion-onset response measured with electroencephalography. NeuroImage. 2017. 159: 185–194.
  8. Briley P.M., Kitterick P.T., Summerfield A.Q. Evidence for Opponent Process Analysis of Sound Source Location in Humans. J. Assoc. Res. Otolaryngol. 2013. 14 (1): 83–101.
  9. Delorme A., Sejnowski T., Makeig S. Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. NeuroImage. 2007. 34 (4): 1443–1449.
  10. Ducommun C.Y., Murray M.M., Thut G., Bellmann A., Viaud-Delmon I., Clarke S., Michel C.M. Segregated processing of auditory motion and auditory location: an ERP mapping study. NeuroImage 2002. 16: 76–88.
  11. Edmonds B.A., Krumbholz K. Are interaural time and level differences represented by independent or integrated codes in the human auditory cortex? J. Assoc. Res. Otolaryngol. 2014. 15: 103–114.
  12. Getzmann S. Effect of auditory motion velocity on reaction time and cortical processes. Neuropsychologia. 2009. 47: 2625–2633.
  13. Getzmann S. Auditory motion perception: onset position and motion direction are encoded in discrete processing stages. European Journ. Neurosci. 2011. 33: 1339–1350.
  14. Getzmann S., Lewald J. Effects of natural versus artificial spatial cues on electrophysiological correlates of auditory motion. Hear. Res. 2010. 259: 44–54.
  15. Getzmann S., Lewald J. The effect of spatial adaptation on auditory motion processing. Hear. Res. 2011. 272 (1–2): 21–29.
  16. Getzmann S., Lewald J. Cortical processing of change in sound location: Smooth motion versus discontinuous displacement. Brain Research. 2012. 1466: 119–127.
  17. Grzeschik R., Böckmann-Barthel M., Mühler R., Hoffmann M.B. Motion-onset auditory-evoked potentials critically depend on history. Exp. Brain Res. 2010. 203: 159–168.
  18. Grzeschik R., Böckmann-Barthel M., Mühler R., Verhey J.L., Hoffmann M.B. Direction-specific adaptation of motion-onset auditory evoked potentials. European Journ. Neurosci. 2013. 38: 2557–2565.
  19. Grzeschik R., Lewald J., Verhey J.L., Hoffmann M.B., Getzmann S. Absence of direction-specific cross-modal visual-auditory adaptation in motion-onset ERPs. European Journ. Neurosci. 2016. 43 (1): 66–77.
  20. Joris Х., Smith P.H., Yin T.C. Coincidence detection in the auditory system: 50 years after Jeffress. Neuron. 1998. 21: 1235–1238.
  21. Kreitewolf J., Lewald J., Getzmann S. Effect of attention on cortical processing of sound motion: An EEG study. NeuroImage. 2011. 54: 2340–2349.
  22. Krumbholz K., Hewson-Stoate N., Schönwiesner M. Cortical response to auditory motion suggests an asymmetry in the reliance on inter-hemispheric connections between the left and right auditory cortices. J.Neurophysiol. 2007. 97: 1649–1655.
  23. Magezi D.A., Krumbholz K. Evidence for opponent channel coding of interaural time differences in human auditory cortex. J. Neurophysiol. 2010. 104 (4): 1997–2007.
  24. Mäkelä J.P., McEvoy L. Auditory evoked fields to illusory sound source movements. Exp. Brain Res. 1996. 110 (3): 446–454.
  25. McLaughlin S.A., Higgins N.C., Stecker G.C. Tuning to Binaural Cues in Human Auditory Cortex. J. Assoc. Res. Otolaryngol. 2016. 17: 37–53.
  26. Ozmeral E.J., Eddins D.A., Eddins A.C. Electrophysiological responses to lateral shifts are not consistent with opponent-channel processing of interaural level differences. J. Neurophysiol. 2019. 122 (2): 737–748.
  27. Panniello M., King A.J., Dahmen J.C., Walker K.M.M. Local and global spatial organization of interaural level difference and frequency preferences in auditory cortex. Cereb. Cortex. 2018. 28: 350–369.
  28. Riedel H., Kollmeier B. Auditory brain stem responses evoked by lateralized clicks: is lateralization extracted in the human brain stem? Hear. Res. 2002. 163: 12–26.
  29. Salminen N.H., May P.J.C., Alku P., Tiitinen H. A population rate code of auditory Space in the human cortex. PLoS ONE. 2009. 4 (10): e7600.
  30. Salminen N.H., Takanen M., Santala O., Lamminsalo J., Altoe A., Pulkki V. Integrated processing of spatial cues in human auditory cortex. Hear. Res. 2015. 327: 143–152.
  31. Sams M., Hämäläinen M., Hari R., McEvoy L. Human auditory cortical mechanisms of sound lateralization: I. Interaural time differences within sound. Hear. Res. 1993. 67:89–97.
  32. Sarrou M., Schmitz P.M., Hamm N., Rübsamen R. Sound frequency affects the auditory motion-onset response in humans. Exp. Brain Res. 2018. 236: 2713–2726.
  33. Shestopalova L.B., Petropavlovskaia E.A., Salikova D.A., Semenova V.V. Temporal integration of sound motion: Motion-onset response and perception. Hear. Res. 2024. 441: 108922.
  34. Shestopalova L.B., Petropavlovskaia E.A., Semenova V.V., Nikitin N.I. Lateralization of brain responses to auditory motion: A study using single-trial analysis. Neurosci. Res. 2021а. 162: 31–44.
  35. Shestopalova L.B., Petropavlovskaia E.A., Semenova V.V., Nikitin N.I. Brain Oscillations evoked by sound motion. Brain Research. 2021b. 1752: 147232.
  36. Tardif E., Murray M.M., Meylan R., Spierer L., Clarke S. The spatio-temporal brain dynamics of processing and integrating sound localization cues in humans. Brain Res. 2006. 1092: 161–176.
  37. Ungan P., Yagcioglu S., Goksoy C. Differences between the N1 waves of the responses to interaural time and intensity disparities: scalp topography and dipole sources. Clin. Neurophysiol. 2001. 112: 485–498.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1. Temporal structure of a single stimulation epoch employed in the delayed motion paradigm. Top row: leftward and rightward sound motion from the head midline (from center). Bottom row: sound motion from left and right to center. Black and grey lines show fast and slow motion, respectively. The X axis is time. The Y axis is interaural level differences (ILDs). The direction of motion is set by synchronously increasing and decreasing the signal level in the left and right channel.

Download (197KB)
3. Fig. 2. Motion-onset responses (MORs) for the left-side and right-side stimuli. MORs were averaged over 24 frontocentral electrodes and over the whole group of subjects (n = 18). Black and gray lines show fast and slow motion, respectively. Solid and dashed lines represent motion from center and to center.

Download (252KB)
4. Fig. 3. Motion-onset responses (MORs) averaged over the whole group of subjects (n = 18) and over the left and right side of acoustic space. Other designations are the same as in Fig. 2.

Download (139KB)
5. Fig. 4. Effects of motion velocity and direction on the magnitude of MOR components (n = 18). Black and grey bars show fast and slow motion, respectively. Statistically significant differences in velocity and direction are shown by solid arrowed lines and horizontal dashed lines, respectively. Asterisks indicate the significance level: *** _ p < 0.001, * _ p < 0.05. Vertical bars show the standard errors of means.

Download (141KB)
6. Fig. 5. Topography of the MOR components (n = 18). To calculate the topograms, the mean response amplitude at each electrode was measured in the 50-ms wide window centered at the corresponding peak of the response averaged over 24 frontocentral electrodes. Peak latencies used in each condition are given above the topograms. The directions of sound motion are shown by arrowed lines. Dashed lines indicate the significant post-hocs (p < 0.05) revealed by rmANOVA (Velocity (slow, fast)*Direction (from center, to center)*Side (left, right)*Hemisphere (left, right)).

Download (415KB)

Copyright (c) 2024 Russian Academy of Sciences