Event-related potentials in studies of the implicit component of cognitive biases

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The review analyzes neurophysiological correlates of the implicit component of cognitive bias in the processes of perception and decision-making. The review identifies the leading methodological pipeline for analysis of the implicit component of cognitive bias, and justifies its choice in terms of the objectives of this review. The method of recording event-related potentials (ERPs) was chosen as the main approach to determining neurophysiological indicators of implicit processes. The analysis of literature allowed us to identify ERP components reproduced in the works of different authors using different variants of experimental designs for studying implicit bias, which may indicate the presence of common neurophysiological mechanisms associated with implicit processes in cognitive bias. The possibility of using other approaches to the analysis of EEG data to obtain new information about the mechanisms of implicit components in cognitive bias is also discussed.

Full Text

Restricted Access

About the authors

M. V. Yatsenko

HSE University; Altai State University

Email: edartemenko@hse.ru
Russian Federation, Saint Petersburg; Barnaul

I. V. Brak

Novosibirsk State University

Email: edartemenko@hse.ru
Russian Federation, Novosibirsk

E. D. Artemenko

HSE University

Author for correspondence.
Email: edartemenko@hse.ru
Russian Federation, Saint Petersburg

References

  1. Боброва Л.А. Когнитивные искажения. Социальные и гуманитарные науки. Отечественная и зарубежная литература. Серия 3, Философия: Реферативный журнал. 2021. (2): 69–79.
  2. Канеман Д. Думай медленно… решай быстро. М.: АСТ, 2016. 653 с.
  3. Осин Е.Н. Измерение позитивных и негативных эмоций: разработка русскоязычного аналога методики PANAS. Психология. Журнал Высшей школы экономики. 2012. 9 (4): 91–110.
  4. Aldayel M., Ykhlef M., Al-Nafjan A. Recognition of Consumer Preference by Analysis and Classification EEG Signals. Front. Hum. Neurosci. 2021. 14: 604639. https://doi.org/0.3389/fnhum.2020.604639
  5. Anzures G., Mildort M. Do perceptual expertise and implicit racial bias predict early face-sensitive ERP responses? Brain Cogn. 2021. 147: 105671. https://doi.org/10.1016/j.bandc.2020.105671
  6. Barsade S.G., Ramarajan L., Westen D. Implicit affect in organizations. Research in Organizational Behavior. 2009. 29: 135–162. https://doi.org/10.1016/j.riob.2009.06.008
  7. Bhat D., Kollu T., Ricci J.A., Patel A. What’s in a Name? Implicit Bias Affects Patient Perception of Surgeon Skill. Plast. Reconstr. Surg. 2021. 147 (6): 948–956. https://doi.org/10.1097/PRS.0000000000008171
  8. Bosshard S.S., Bourke J.D., Kunaharan S., Koller M., Walla P., Heinonen J. Established liked versus disliked brands: Brain activity, implicit associations and explicit responses. Cogent Psychology. 2016. 3:1. https://doi.org/10.1080/23311908.2016.1176691
  9. Camsari D.D., Lewis C.P., Sonmez A.I., Ozger C., Fatih P., Yuruk D., Shekunov J., Vande Voort J.L., Croarkin P.E. Event-Related Potential Markers of Suicidality in Adolescents. Int. J. Neuropsychopharmacol. 2023. 26 (8): 566–575. https://doi.org/10.1093/ijnp/pyad039
  10. Cai H., Wu L. The self-esteem implicit association test is valid: Evidence from brain activity. Psych J. 2021 Jun;10(3):465-477. doi: 10.1002/pchj.422. Epub 2021 Jan 28. PMID: 33511787.
  11. Chaiyanan C., Iramina K., Kaewkamnerdpong B. Investigation on Identifying Implicit Learning Event from EEG Signal Using Multiscale Entropy and Artificial Bee Colony. Entropy. 2021. 23 (5): 617. https://doi.org/10.3390/e23050617
  12. Chen L., Zhou H., Gu Y., Wang S., Wang J., Tian L., Zhu H., Zhou Z. The Neural Correlates of Implicit Cognitive Bias Toward Internet-Related Cues in Internet Addiction: An ERP Study. Front. Psychiatry. 2018. 9: 421. https://doi.org/10.3389/fpsyt.2018.00421.
  13. Cui Y., Engelmann J.M., Gilbert D.G., Waters A.J., Cinciripini P.M., Robinson J.D. The impact of nicotine dose and instructed dose on smokers’ implicit attitudes to smoking cues: An ERP study. Psychol Addict Behav. 2019. 33(8): 710–720. https://doi.org/10.1037/adb0000523
  14. Greenwald A.G., McGhee D.E., Schwartz J.L. Measuring individual differences in implicit cognition: the implicit association test. J. Pers. Soc. Psychol. 1998. 74 (6): 1464-80. https://doi.org/10.1037//0022-3514.74.6.1464.
  15. Greenwald A.G., Poehlman T.A., Uhlmann E.L., Banaji M.R. Understanding and using the Implicit Association Test: III. Meta-analysis of predictive validity. J Pers Soc Psychol. 2009. 97 (1): 17–41. https://doi.org/10.1037/a0015575
  16. Healy G.F., Boran L., Smeaton A.F. Neural Patterns of the Implicit Association Test. Front. Hum. Neurosci. 2015. 9: 605. https://doi.org/10.3389/fnhum.2015.00605
  17. Hilgard J., Bartholow B.D., Dickter C.L., Blanton H. Characterizing switching and congruency effects in the Implicit Association Test as reactive and proactive cognitive control. Social Cognitive and Affective Neuroscience. 2015. 10 (3): 381–388. https://doi.org/10.1093/scan/nsu060
  18. Howell J.L., Gasser M.L., Kaysen D., Lindgren K.P. Understanding parental vaccine refusal: Implicit and explicit associations about vaccines as potential building blocks of vaccine beliefs and behavior. Social Science & Medicine. 2022. 310: 115275. https://doi.org/10.1016/j.socscimed.2022.115275
  19. Lahtinen A., Juvonen K., Lapveteläinen A., Kolehmainen M., Lindholm M., Tanila H., Kantanen T., Sinikallio S., Karhunen L., Närväinen J. Metabolic state as a modulator of neural event-related potentials for food stimuli in an implicit association test. Physiol. Behav. 2019. 209: 112589. https://doi.org/10.1016/j.physbeh.2019.112589
  20. Le Bouc R., Pessiglione M. A neuro-computational account of procrastination behavior. Nat. Commun. 2022. 13 (1): 5639. https://doi.org/10.1038/s41467-022-33119-w
  21. Lou Y., Lei Y., Astikainen P., Peng W., Otieno S., Leppänen P.H.T. Brain responses of dysphoric and control participants during a self-esteem implicit association test. Psychophysiology. 2021. 58 (4): e13768. https://doi.org/10.1111/psyp.13768
  22. Meissner F., Grigutsch L.A., Koranyi N., Müller F., Rothermund K. Predicting Behavior With Implicit Measures: Disillusioning Findings, Reasonable Explanations, and Sophisticated Solutions. Front. Psychol. 2019. 10: 2483. https://doi.org/10.3389/fpsyg.2019.02483
  23. Nosek B.A., Hawkins C.B., Frazier R.S. Implicit social cognition: from measures to mechanisms. Trends Cogn Sci. 2011. 15 (4): 152–159. https://doi.org/10.1016/j.tics.2011.01.005
  24. Pesciarelli F., Leo I., Serafini L. Electrophysiological correlates of unconscious processes of race. Sci Rep. 2021. 11: 11646. https://doi.org/10.1038/s41598-021-91133-2
  25. Peters U. What is the function of confirmation bias? Erkenntnis, 2022. 87 (3): 1351–1376. https://doi.org/10.1007/s10670-020-00252-1
  26. Qian Y., Xiaoyun L., Weiwei P. Individual Variation in Pain Sensitivity and Implicit Negative Bias Toward Pain. Psychosomatic Medicine. 2020. 82 (8): 796–804. https://doi.org/10.1097/PSY.0000000000000844
  27. Portengen C.M., Huffmeijer R., van Baar A.L., Endendijk J.J. Measuring the neural correlates of the violation of social expectations: A comparison of two experimental tasks. Social Neuroscience. 2022. 17 (1): 58–72. https://doi.org/10.1080/17470919.2022.2032327
  28. Quirin M., Kazén M., Kuhl J. When nonsense sounds happy or helpless: The Implicit Positive and Negative Affect Test (IPANAT). Journal of Personality and Social Psychology. 2009. 97: 500–516. https://doi.org/10.1037/a0016063
  29. Schiller B., Gianotti L.R., Baumgartner T., Nash K., Koenig T., Knoch D. Clocking the social mind by identifying mental processes in the IAT with electrical neuroimaging. Proc. Natl. Acad. Sci. USA. 2016. 113 (10): 2786–2791. https://doi.org/10.1073/pnas.1515828113
  30. Schiller B., Sperl M.F.J., Kleinert T., Nash K., Gianotti L.R.R. EEG Microstates in Social and Affective Neuroscience. Brain Topogr. 2023. https://doi.org/10.1007/s10548-023-00987-4
  31. Shah H.S., Bohlen J. Implicit Bias. 2023 Mar 4. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2024.
  32. Simione L., Vagni M., Maiorano T., Giostra V., Pajardi D. How Implicit Attitudes toward Vaccination Affect Vaccine Hesitancy and Behaviour: Developing and Validating the V-IRAP. Int. J. Environ. Res. Public Health. 2022. 19: 4205. https://doi.org/10.3390/ ijerph19074205
  33. Tao D., Leng Y., Peng S., Xu J., Ge S., Deng H. Temporal dynamics of explicit and implicit moral evaluations. International Journal of Psychophysiology. 2022. 172: 1–9. https://doi.org/10.1016/j.ijpsycho.2021.12.006
  34. Tschuemperlin R.M., Batschelet H.M., Moggi F., Koenig T., Roesner S., Keller A., Pfeifer P., Soravia L.M., Stein M. The Neurophysiology of Implicit Alcohol Associations in Recently Abstinent Patients With Alcohol Use Disorder: An Event-Related Potential Study Considering Gender Effects. Alcohol Clin Exp Res. 2020. 44(10): 2031–2044. https://doi.org/10.1111/acer.14444
  35. van Nunspeet F., Ellemers N., Derks B., Nieuwenhuis S. Moral concerns increase attention and response monitoring during IAT performance: ERP evidence. Social Cognitive and Affective Neuroscience. 2014. 9 (2): 141–149.
  36. Wagner-Altendorf T.A., van der Lugt A.H., Kroeber A., Cirkel A., Heldmann M., Münte T.F. Differences in Implicit Attitudes in West and East Germans as Measured by the Go/NoGo Association Task and Event-related EEG Potentials. Cognitive and Behavioral Neurology. 2023. 36 (3): 145–158. https://doi.org/10.1097/WNN.0000000000000338
  37. Wang Y, Li X. Temporal course of implicit emotion regulation during a Priming-Identify task: an ERP study. Sci Rep. 2017. 2(7): 41941. https://doi.org/10.1038/srep41941
  38. Williams J.K., Themanson J.R. Neural correlates of the implicit association test: evidence for semantic and emotional processing. Social Cognitive and Affective Neuroscience. 2011. 6 (4): 468–476. https://doi.org/10.1093/scan/nsq065

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences