INCREASE OF INTRACRANIAL EEG ALPHA PEAK FREQUENCY AS A RESPONSE TO THE OWN-NAME STIMULUS DURING GENERAL ANESTHESIA IN ELEVEN PATIENTS WITH BRAIN TUMORS
- Authors: Portnova G.V.1, Kantserova A.O.1, Oknina L.B.1, Pitskhelauri D.I.2, Podlepich V.V.2, Vologdina Y.O.2, Masherov E.L.2
-
Affiliations:
- Institute of Higher Nervous Activity and Neurophysiology RAS
- Burdenko Institute of Neurosurgery, Ministry of Health of Russia
- Issue: Vol 73, No 5 (2023)
- Pages: 622-636
- Section: ФИЗИОЛОГИЯ ВЫСШЕЙ НЕРВНОЙ (КОГНИТИВНОЙ) ДЕЯТЕЛЬНОСТИ ЧЕЛОВЕКА
- URL: https://cardiosomatics.orscience.ru/0044-4677/article/view/652014
- DOI: https://doi.org/10.31857/S0044467723050106
- EDN: https://elibrary.ru/TRWMSZ
- ID: 652014
Cite item
Abstract
The few existing studies demonstrated that hearing one’s name could have an arousal or alertness impact during unconsciousness. At the same time, the brain areas involved in this reactivity remained unknown. In this study, we attempted to register a response from two brain areas, the mesencephalon and cerebral cortex, in eleven patients who underwent posterior third ventricle or posterior fossa tumor removals under general anesthesia. We used 2 deep electrodes and 16 scalp electrodes and a registered electroencephalogram (EEG) for 2 states: the resting state, and stimulation state (which included sounds of one’s name, another name, and noise, presented in random order). Our results indicated that patients under general anesthesia could respond to their names (demonstrated by accelerated alpha-peak frequency), compared to other sounds and the resting state EEG, which was registered both on the cerebral and mesencephalon levels, indicating activated brain systems.
Keywords
About the authors
G. V. Portnova
Institute of Higher Nervous Activity and Neurophysiology RAS
Author for correspondence.
Email: caviter@list.ru
Russia, Moscow
A. O. Kantserova
Institute of Higher Nervous Activity and Neurophysiology RAS
Email: caviter@list.ru
Russia, Moscow
L. B. Oknina
Institute of Higher Nervous Activity and Neurophysiology RAS
Email: caviter@list.ru
Russia, Moscow
D. I. Pitskhelauri
Burdenko Institute of Neurosurgery, Ministry of Health of Russia
Email: caviter@list.ru
Russia, Moscow
V. V. Podlepich
Burdenko Institute of Neurosurgery, Ministry of Health of Russia
Email: caviter@list.ru
Russia, Moscow
Ya. O. Vologdina
Burdenko Institute of Neurosurgery, Ministry of Health of Russia
Email: caviter@list.ru
Russia, Moscow
E. L. Masherov
Burdenko Institute of Neurosurgery, Ministry of Health of Russia
Email: caviter@list.ru
Russia, Moscow
References
- Badalova B. Modern Methods of Teaching Russian and Uzbek as a Foreign Language to Students. Science and Education. 2020. 1 (Special Issue 2).
- Banquet J.P. Spectral analysis of the EEG in meditation. Electroencephalography and clinical neurophysiology. 1973. 35 (2): 143–151. https://doi.org/10.1016/0013-4694(73)90170-3
- Barry R.J., De Blasio F.M., Fogarty J.S., Clarke A.R. Natural alpha frequency components in resting EEG and their relation to arousal. Clinical neurophysiology: official J. International Federation of Clinical Neurophysiology. 2020. 131 (1): 205–212. https://doi.org/10.1016/j.clinph.2019.10.018
- Bastuji H., Perrin F., Garcia-Larrea L. Semantic analysis of auditory input during sleep: studies with event related potentials. International j. psychophysiology: official journal of the International Organization of Psychophysiology. 2002. 46 (3): 243–255. https://doi.org/10.1016/s0167-8760(02)00116-2
- Boldyreva G.N. The hyppocampal alpha-rhythm of the human brain. Electroencephalography and clinical neurophysiology. 1997. 1 (103): 199.
- Cheng L., Gosseries O., Ying L., Hu X., Yu D., Gao H., He M., Schnakers C., Laureys S., Di H. Assessment of localisation to auditory stimulation in post-comatose states: use the patient’s own name. BMC neurology. 2013. 13: 27. https://doi.org/10.1186/1471-2377-13-27
- De Gennaro L., Ferrara M., Curcio G., Cristiani R. Antero-posterior EEG changes during the wakefulness-sleep transition. Clinical neurophysiology: official j. International Federation of Clinical Neurophysiology. 2001. 112 (10): 1901–1911. https://doi.org/10.1016/s1388-2457(01)00649-6
- di Fronso S., Fiedler P., Tamburro G., Haueisen J., Bertollo M., Comani, S. Dry EEG in Sports Sciences: A Fast and Reliable Tool to Assess Individual Alpha Peak Frequency Changes Induced by Physical Effort. Frontiers in neuroscience. 2019. 13: 982. https://doi.org/10.3389/fnins.2019.00982
- Feige B., Scheffler K., Esposito F., Di Salle F., Hennig J., Seifritz E. Cortical and subcortical correlates of electroencephalographic alpha rhythm modulation. J. neurophysiology. 2005. 93 (5): 2864-2872. https://doi.org/10.1152/jn.00721.2004
- Fischer C., Dailler F., Morlet D. Novelty P3 elicited by the subject’s own name in comatose patients. Clinical neurophysiology: official J. International Federation of Clinical Neurophysiology. 2008. 119 (10): 2224–2230. https://doi.org/10.1016/j.clinph.2008.03.035
- Freitas S., Simoes M.R., Maroco J., Alves L., Santana I. Construct Validity of the Montreal Cognitive Assessment (MoCA). J. International Neuropsychological Society. 2012. 18 (2): 242–250. https://doi.org/10.1017/S1355617711001573
- Gutmann B., Mierau A., Hulsdunker T., Hildebrand C., Przyklenk A., Hollmann W., Struder H.K. Effects of physical exercise on individual resting state EEG alpha peak frequency. Neural plasticity. 2015. 717312. https://doi.org/10.1155/2015/717312
- Gutmann B., Zimmer P., Hulsdunker T., Lefebvre J., Binnebossel S., Oberste M., Bloch W., Struder H.K., Mierau A. The effects of exercise intensity and post-exercise recovery time on cortical activation as revealed by EEG alpha peak frequency. Neuroscience letters. 2018. 668: 159–163. https://doi.org/10.1016/j.neulet.2018.01.007
- Haegens S., Cousijn H., Wallis G., Harrison P.J., Nobre A.C. Inter- and intra-individual variability in alpha peak frequency. NeuroImage. 2014. 92 (100): 46–55. https://doi.org/10.1016/j.neuroimage.2014.01.049
- Holeckova I., Fischer C., Morlet D., Delpuech C., Costes N., Mauguiere F. Subject’s own name as a novel in a MMN design: a combined ERP and PET study. Brain research. 2008. 1189: 152–165. https://doi.org/10.1016/j.brainres.2007.10.091
- Holler Y., Kronbichler M., Bergmann J., Crone J.S., Ladurner G., Golaszewski S. EEG frequency analysis of responses to the own-name stimulus. Clinical neurophysiology: official J. International Federation of Clinical Neurophysiology. 2011. 122 (1): 99–106. https://doi.org/10.1016/j.clinph.2010.05.029
- Jensen O., Mazaheri A. Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Frontiers in human neuroscience. 2010. 4: 186. https://doi.org/10.3389/fnhum.2010.00186
- Kannabiran N., Bidkar P.U. Total intravenous anesthesia in neurosurgery. J. Neuroan-aesthesiology and Critical Care. 2018. 5 (3): 141–149. https://doi.org/10.1055/s-0038-1673544
- Kempny A.M., James L., Yelden K., Duport S., Farmer S.F., Playford D.E., Lef A.P. Patients with a severe prolonged Disorder of Consciousness can show classical EEG responses to their own name compared with others' names. NeuroImage: Clinical. 2018. 19: 311–319. https://doi.org/10.1016/j.nicl.2018.04.027
- Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain research reviews. 1999. 29 (2–3): 169–195. https://doi.org/10.1016/s0165-0173(98)00056-3
- Klimesch W., Schimke H., Pfurtscheller G. Alpha frequency, cognitive load and memory performance. Brain topography. 1993. 5 (3): 241–251. https://doi.org/10.1007/BF01128991
- Li K., Fan L., Cui Y., Wei X., He Y., Yang J., Lu Y., Li W., Shi W., Cao L., Cheng L., Li A., You B., Jiang T. The human mediodorsal thalamus: Organization, connectivity, and function. NeuroImage. 2022. 249: 118876. https://doi.org/10.1016/j.neuroimage.2022.118876
- Luria A.R. Higher cortical function in man. N.Y.: Springer New York, 1980. https://doi.org/10.1007/978-1-4615-8579-4
- Manshanden I., De Munck J.C., Simon N.R., Lopes da Silva F.H. Source localization of MEG sleep spindles and the relation to sources of alpha band rhythms. Clinical neurophysiology: official J. International Federation of Clinical Neurophysiology. 2002. 113 (12): 1937–1947. https://doi.org/10.1016/s1388-2457(02)00304-8
- Moretti D.V., Prestia A., Fracassi C., Geroldi C., Binetti G., Rossini P.M., Zanetti O., Frisoni G.B. Volumetric differences in mapped hippocampal regions correlate with increase of high alpha rhythm in Alzheimer’s disease. International J. Alzheimer’s disease. 2011. 208218. https://doi.org/10.4061/2011/208218
- Musizza B., Ribaric S. Monitoring the depth of anaesthesia. Sensors. 2010. 10 (12): 10896–10935. https://doi.org/10.3390/s101210896
- Omata K., Hanakawa T., Morimoto M., Honda M. Spontaneous Slow Fluctuation of EEG Alpha Rhythm Reflects Activity in Deep-Brain Structures: A Simultaneous EEG-fMRI Study. PloS one. 2013. 8 (6): e66869. https://doi.org/10.1371/journal.pone.0066869
- Oswald I., Taylor A.M., Treisman M. Discriminative responses to stimulation during human sleep. Brain: a journal of neurology. 1960. 83 (3): 440–453. https://doi.org/10.1093/brain/83.3.440
- Patel A.K., Reddy V., Shumway K.R., Araujo J.F. Physiology, Sleep Stages. Treasure Island (FL): StatPearls Publishing. 2023.
- Paus T. Functional anatomy of arousal and attention systems in the human brain. Progress in brain research. 2000. 126: 65–77. https://doi.org/10.1016/S0079-6123(00)26007-X
- Perrin F., Garcia-Larrea L., Mauguiere F., Bastuji H. A differential brain response to the subject’s own name persists during sleep. Clinical neurophysiology: official J. International Federation of Clinical Neurophysiology. 1999. 110 (12): 2153–2164. https://doi.org/10.1016/s1388-2457(99)00177-7
- Portas C.M., Krakow K., Allen P., Josephs O., Armony J.L., Frith C.D. Auditory processing across the sleep-wake cycle: simultaneous EEG and fMRI monitoring in humans. Neuron. 2000. 28 (3): 991–999. https://doi.org/10.1016/s0896-6273(00)00169-0
- Portnova G.V., Proskurnina E.V., Sokolova S.V., Skorokhodov I.V., Varlamov A.A. Perceived pleasantness of gentle touch in healthy individuals is related to salivary oxytocin response and EEG markers of arousal. Experimental brain research. 2020. 238 (10): 2257–2268. https://doi.org/10.1007/s00221-020-05891-y
- Ruby P., Blochet C., Eichenlaub J.B., Bertrand O., Morlet D., Bidet-Caulet A. Alpha reactivity to complex sounds differs during REM sleep and wakefulness. PloS one. 2013a. 8 (11): e79989. https://doi.org/10.1371/journal.pone.0079989
- Ruby P., Blochet C., Eichenlaub J.B., Bertrand O., Morlet D., Bidet-Caulet A. Alpha reactivity to first names differs in subjects with high and low dream recall frequency. Frontiers in psychology. 2013b. 4: 419. https://doi.org/10.3389/fpsyg.2013.00419
- Rudolph U., Antkowiak B. Molecular and neuronal substrates for general anaesthetics. Nature reviews Neuroscience. 2004. 5 (9): 709–720. https://doi.org/10.1038/nrn1496
- Sadato N., Nakamura S., Oohashi T., Nishina E., Fuwamoto Y., Waki A., Yonekura Y. Neural networks for generation and suppression of alpha rhythm: a PET study. Neuroreport. 1998. 9 (5): 893–897. https://doi.org/10.1097/00001756-199803300-00024
- Schiff N.-D. Central thalamic contributions to arousal regulation and neurological disorders of consciousness. Annals of the New York Academy of Sciences. 2008. 1129: 105–118. https://doi.org/10.1196/annals.1417.029
- Schreckenberger M., Lange-Asschenfeldt C., Lochmann M., Mann K., Siessmeier T., Buchholz H. G., Bartenstein P., Grunder G. The thalamus as the generator and modulator of EEG alpha rhythm: a combined PET/EEG study with lorazepam challenge in humans. NeuroImage. 2004. 22 (2): 637–644. https://doi.org/10.1016/j.neuroimage.2004.01.047
- Schwabedal J.T., Riedl M., Penzel T., Wessel N. Alpha-wave frequency characteristics in health and insomnia during sleep. J. sleep research. 2016. 25 (3): 278–286. https://doi.org/10.1111/jsr.12372
- Shaw J.C. The brain’s alpha rhythms and the mind. BV Elsevier Science. 2003.
- Scheeringa R., Petersson K.M., Oostenveld R., Norris D.G., Hagoort P., Bastiaansen M.C. Trial-by-trial coupling between EEG and BOLD identifies networks related to alpha and theta EEG power increases during working memory maintenance. Neuroimage. 2009. 44 (3): 1224–1238. https://doi.org/10.1016/j.neuroimage.2008.08.041
- Vanhaudenhuyse A., Laureys S., Perrin F. Cognitive event-related potentials in comatose and post-comatose states. Neurocritical care. 2008. 8 (2): 262–270. https://doi.org/10.1007/s12028-007-9016-0
- Voss U., Harsh J. Information processing and coping style during the wake/sleep transition. J. sleep research. 1998. 7 (4): 225–232. https://doi.org/10.1046/j.1365-2869.1998.00117.x
- Weber A., Scharenborg O. Models of spoken-word recognition. Wiley interdisciplinary reviews Cognitive science. 2012. 3 (3): 387–401. https://doi.org/10.1002/wcs.1178
- Zimmer P., Mierau A., Bloch W., Struder H.K., Hulsdunker T., Schenk A., Fiebig L., Baumann F.T., Hahn M., Reinart N., Hallek M., Elter T. Post-chemotherapy cognitive impairment in patients with B-cell non-Hodgkin lymphoma: a first comprehensive approach to determine cognitive impairments after treatment with rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone or rituximab and bendamustine. Leukemia & lymphoma. 2015. 56 (2): 347–352. https://doi.org/10.3109/10428194.2014.915546
Supplementary files
