Hydrothermal synthesis of bimetallic platinum-nickel powders and their structural characteristics

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The processes of combined reduction of platinum and nickel complex compounds from ammonia-alkaline aqueous solutions with hydrazine hydrate under hydrothermal autoclave conditions are studied. It was established that quantitative precipitation of nickel and platinum occurred within 1 hour at a temperature of 110°C. All phases formed during the reduction had the fcc lattices and exhibited ferromagnetic properties. X-ray phase analysis has proven the formation of solid platinum-nickel substitution solutions. The molar ratio of nickel to platinum was varied from 16/1 to 0.5/1, and in all cases the formation of two phases of the solid nickel-platinum substitution solution was found out: one of variable composition depending on the initial molar ratio of nickel and platinum, with a lattice parameter of 3.622–3.772 Å, which corresponds to 25–62 at. % of platinum; and the second one, enriched in platinum, of practically unchanged composition (90–95 at. %) with a parameter of 3.885–3.901 Å. At ratios from 16/1 to 1/1, in addition to two phases of the solid solution, a nickel phase with a crystal lattice parameter of 3.527 Å was clearly recorded. When the initial ratio of nickel to platinum was 0.5/1, an individual phase of metallic nickel was not detected. It was found that under hydrothermal conditions, nickel dissolved in a solution of 1 M hydrochloric acid, and solid solutions were chemically and structurally stable.

Full Text

Restricted Access

About the authors

O. V. Belousov

Institute of Chemistry and Chemical Technology; Siberian Branch of the Russian Academy of Sciences, Siberian Federal University

Email: roma_boris@list.ru
Russian Federation, Akademgorodok, 50/24, Krasnoyarsk, 660036; Svobodny Ave., 79, Krasnoyarsk, 660041

N. V. Belousova

Siberian Federal University

Email: roma_boris@list.ru
Russian Federation, Svobodny Ave., 79, Krasnoyarsk, 660041

R. V. Borisov

Institute of Chemistry and Chemical Technology; Siberian Branch of the Russian Academy of Sciences, Siberian Federal University

Author for correspondence.
Email: roma_boris@list.ru
Russian Federation, Akademgorodok, 50/24, Krasnoyarsk, 660036; Svobodny Ave., 79, Krasnoyarsk, 660041

A. M. Zhizhaev

Institute of Chemistry and Chemical Technology, Siberian Branch of the Russian Academy of Sciences

Email: roma_boris@list.ru
Russian Federation, Akademgorodok, 50/24, Krasnoyarsk, 660036

References

  1. Behera A., Mittu B., Padhi S. et al. // Micro and Nano Technologies. 2020. P. 639. https://doi.org/10.1016/B978-0-12-821354-4.00025-X
  2. Zhou M., Li C., Fang J. // Chem. Rev. 2020. V. 121. № 2. P. 736. https://doi.org/10.1021/acs.chemrev.0c00436
  3. Ali S., Sharma A.S., Ahmad W. et al. // Crit. Rev. Anal. Chem. 2021. V. 51. № 5. P. 454. https://doi.org/10.1080/10408347.2020.1743964
  4. Ghosh Chaudhuri R., Paria S. // Chem. Rev. 2012. V. 112. № 4. P. 2373. https://doi.org/10.1021/cr100449n
  5. Mazhar T., Shrivastava V., Tomar R.S. // J. Pharm. Sci. Research. 2017. V. 9. № 2. P. 102.
  6. Wang C., Dragoe D., Colbeau-Justin C. et al. // ACS Appl. Mater. Interfасеs. 2023. V. 15. № 36. P. 42637. https://doi.org/10.1021/acsami.3c08842
  7. Соловьева А.Ю., Еременко Н.К., Образцова И.И. и др. // Журн. неорган. химии. 2018. Т. 63. № 4. С. 416. https://doi.org/10.7868/S0044457X18040049
  8. Schnedlitz M., Fernandez-Perea R., Knez D. et al. // J. Phys. Chem. C. 2019. V. 123. № 32. P. 20037. https://dx.doi.org/10.1021/acs.jpcc.9b05765
  9. Chen Y., Yang F., Dai Y. et al. // J. Phys. Chem. C. 2008. V. 112. № 5. P. 1645. https://doi.org/10.1021/jp709886y
  10. Chen Y., Liang Z., Yang F. et al. // J. Phys. Chem. C. 2011. V. 115. № 49. P. 24073. https://doi.org/10.1021/jp207828n
  11. Nadeem M., Yasin G., Bhatti M.H. et al. // J. Power Sources. 2018. V. 402. P. 34. https://doi.org/10.1016/j.jpowsour.2018.09.006
  12. Eiler K., Fornell J., Navarro-Senent C. et al. // Nanoscale. 2020. V. 12. № 14. P. 7749. https://doi.org/10.1039/C9NR10757F
  13. Nair K.G., Vishnuraj R., Pullithadathil B. // ACS Appl. Electron. Mater. 2021. V. 3. № 4. P. 1621. https://doi.org/10.1021/acsaelm.0c01103
  14. Li Y.J., Dong K., Ma X.K. et al. // Sep. Purif. Technol. 2023. V. 315. P. 123631. https://doi.org/10.1016/j.seppur.2023.123631
  15. Руднева Ю.В., Коренев С.В. // Журн. неорган. химии. 2024. Т. 69. № 8. С. 1181. https://doi.org/10.31857/S0044457X24080112
  16. Бумагин Н.А. // Журн. общей химии. 2023. Т. 93. № 2. С. 332. https://doi.org/10.1134/S1070363223020147
  17. Shamsabadi A., Haghighi T., Carvalho S. et al. // Adv. Mater. 2023. V. 36. № 10. P. 2300184. https://doi.org/10.1002/adma.202300184
  18. Da Silva C.M., Amara H., Fossard F. et al. // Nanoscale. 2022. V. 14. № 27. P. 9832. https://doi.org/10.1039/D2NR02478K
  19. Peng C., Pang R., Li J. et al. // Adv. Mater. 2023. V. 36. № 10. P. 2211724. https://doi.org/10.1002/adma.202211724
  20. Рашидова С.Ш., Вохидова Н.Р., Алексеева О.В. // Журн. неорган. химии. 2012. Т. 67. № 12. С. 1851. https://doi.org/10.31857/S0044457X22601146
  21. Godínez-Salomón F., Hallen-López M., Solorza-Feria O. // Int. J. Hydrogеn Energy. 2012. V. 37. № 19. P. 14902. https://doi.org/10.1016/j.ijhydene.2012.01.157
  22. Zhao Y., Yang X., Tian J. et al. // Int. J. Hydrogеn Energy. 2010. V. 35. № 8. P. 3249. https://doi.org/10.1016/j.ijhydene.2010.01.112
  23. Wang R., Wang H., Luo F. et al. // Electrochem. Energy Rev. 2018. V. 1. P. 324. https://doi.org/10.1007/s41918-018-0013-0
  24. Dahmani C.E., Cadeville M.C., Sanchez J.M. et al. // Phys. Rev. Lett. 1985. V. 55. № 11. P. 1208. https://doi.org/10.1103/PhysRevLett.55.1208
  25. Федоров П.П., Попов А.А., Шубин Ю.В. и др. // Журн. неорган. химии. 2022. Т. 67. № 12. С. 1805. https://doi.org/10.31857/S0044457X22600748
  26. Логутенко О.А., Титков А.И., Воробьев А.М. и др. // Журн. общей химии. 2018. Т. 88. № 2. С. 311.
  27. Борисов Р.В., Белоусов О.В., Лихацкий М.Н. и др. // Журн. неорган. химии. 2023. Т. 68. № 11. С. 1537. https://doi.org/10.31857/S0044457X23600573
  28. Zakharov Y.A., Pugachev V.M., Bogomyakov A.S. et al. // J. Phys. Chem. C. 2019. V. 124. № 1. P. 1008. https://doi.org/10.1021/acs.jpcc.9b07897
  29. Белоусов О.В., Борисов Р.В., Белоусова Н.В. и др. // Журн. неорган. химии. 2021. Т. 66. № 10. С. 1380. https://doi.org/10.31857/S0044457X21100032
  30. Фесик Е.В., Буслаева Т.М., Мельникова Т.И. др. // Неорган. материалы. 2018. Т. 54. № 12. С. 1363. https://doi.org/10.1134/S0002337X18120035
  31. Pinchujit S., Phuruangrat A., Wannapop S. et al. // Russ. J. Inorg. Chem. 2022. V. 67 (Suppl. 2). Р. S199. https://doi.org/10.1134/S0036023622602148
  32. Симоненко Т.Л., Дудорова Д.А., Симоненко Н.П. и др. // Журн. неорган. химии. 2023. Т. 68. № 12. С. 1849. https://doi.org/10.31857/S0044457X23601591
  33. Поляков Е.В., Цуканов Р.Р., Булдакова Л.Ю. и др. // Журн. неорган. химии. 2022. Т. 67. № 6. С. 852. https://doi.org/10.31857/S0044457X22060204
  34. Васильченко Д.Б., Комаров В.Ю., Ткачев С.В. и др. // Журн. неорган. химии. 2022. Т. 67. № 12. С. 1707. https://doi.org/10.31857/S0044457X22601018
  35. Воробьев А.М., Титков А.И., Логутенко О.А. // Журн. общей химии. 2022. Т. 92. № 3. С. 484. https://doi.org/10.31857/S0044460X22030106
  36. Тупикова Е.Н., Платонов И.А., Бондарева О.С. и др. // Кинетика и катализ. 2021. Т. 62. № 6. С. 803. https://doi.org/10.31857/S0453881121060186
  37. Wang Y., Yan R., Xiang Q. et al. // Chem. Select. 2023. V. 8. № 41. P. e202303718. https://doi.org/10.1002/slct.202303718
  38. Wang K., Wang Y., Geng S. et al. // Adv. Funct. Mater. 2022. V. 32. № 22. P. 2113399. https://doi.org/10.1002/adfm.202113399
  39. Leteba G.M., Mitchell D.R., Levecque P.B. et al. // ACS Appl. Nano Mater. 2020. V. 3. № 6. P. 5718. https://doi.org/10.1021/acsanm.0c00915
  40. Liu X., Xu G., Chen Y. et al. // Sci. Rep. 2015. V. 5. № 1. P. 7619. https://doi.org/10.1038/srep07619
  41. Li Y.J., Dong K., Ma X.K. et al. // Sep. Purif. Technol. 2023. V. 315. P. 123631. https://doi.org/10.1016/j.seppur.2023.123631
  42. Белоусова Н.В., Белоусов О.В., Борисов Р.В. и др. // Изв. вузов. Цветная металлургия. 2023. Т. 29. № 5. С. 15. https://doi.org/10.17073/0021-3438-2023-5-15-24
  43. Belousov O.V., Belousova N.V., Sirotina A.V. et al. // Langmuir. 2011. V. 27. № 18. P. 11697. https://doi.org/10.1021/la202686x
  44. Конин Г.А., Большаков А.М., Хмелевская Л.В. // Коорд. химия. 1996. Т. 22. № 12. C. 928.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Fragments of X-ray diffraction patterns of sample 4: 1 – synthesized for 1 hour at a temperature of 110°C, molar ratio nNi : nPt = 4 : 1; 2 – material after treatment of the solid phase with 1 M hydrochloric acid.

Download (196KB)
3. Fig. 2. Dependence of the crystal lattice parameter of the β-phase on the logarithm of the molar ratio Ni: Pt.

Download (43KB)
4. Рис. 3. Зависимость количества фазы Ni(0) в твердой фазе от логарифма мольного соотношения Ni : Pt.

Download (43KB)
5. Fig. 4. SEM image, element distribution maps and Ni:Pt atomic ratio at different points: a – sample 4; b – sample 7.

Download (655KB)
6. Fig. 5. SEM image of Ni, Pt material, sample 4 after treatment in 1 M HCl.

Download (313KB)

Copyright (c) 2025 Russian Academy of Sciences