Thermodynamic Modeling of Condensed Phase Composition during Decomposition of Iron(III) Acetylacetonate

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Thermodynamic modeling of the composition of condensed phases formed during the decomposition of the volatile precursor Fe(acac)3, iron (III) acetylacetonate, depending on the conditions (temperature, total pressure, amount of added oxygen) was performed. Selection and processing of initial thermodynamic data for gaseous and crystalline Fe(acac)3 (enthalpy and entropy of formation, temperature dependences of heat capacity) and for its sublimation process have been carried out. It is shown that the introduction of a set of consistent data on the precursor does not affect the modeling results, i. e., the initial substance is thermodynamically unstable in equilibrium with the possible components of the gas phase and the complication of the calculation model is not reasonable. The obtained diagrams can be useful for optimization of processes of chemical gas-phase deposition of materials containing iron oxide or carbide phases.

Sobre autores

E. Richter

A. V. Nikolaev Institute of Inorganic Chemistry. A. V. Inorganic Chemistry Siberian Branch of RAS; Novosibirsk National Research State University

Email: e.rikhter@g.nsu.ru
630090, Novosibirsk, Russia; 630090, Novosibirsk, Russia

S. Varvarinskaya

A. V. Nikolaev Institute of Inorganic Chemistry. A. V. Inorganic Chemistry Siberian Branch of RAS; Novosibirsk National Research State University

630090, Novosibirsk, Russia; 630090, Novosibirsk, Russia

S. Sysoev

A. V. Nikolaev Institute of Inorganic Chemistry. A. V. Inorganic Chemistry Siberian Branch of RAS

630090, Novosibirsk, Russia

M. Bespyatov

A. V. Nikolaev Institute of Inorganic Chemistry. A. V. Inorganic Chemistry Siberian Branch of RAS

630090, Novosibirsk, Russia

E. Vikulova

A. V. Nikolaev Institute of Inorganic Chemistry. A. V. Inorganic Chemistry Siberian Branch of RAS

630090, Novosibirsk, Russia

N. Gelfond

A. V. Nikolaev Institute of Inorganic Chemistry. A. V. Inorganic Chemistry Siberian Branch of RAS

630090, Novosibirsk, Russia

Bibliografia

  1. Lommelen R., Binnemans K. // ACS Omega. 2021. V.6. № 17. 6(17). P. 11355. https://doi.org/10.1021/acsomega.1c00340
  2. Alkhatib I.I.I., Bahamon D., Llovell F. et al. // J. Mol. Liq. 2020. V. 298. P. 112183. https://doi.org/10.1016/j.molliq.2019.112183
  3. Xiang H., Connolly J. // J. Metamorph. Geol. 2022. V. 40. № 2. P. 243. https://doi.org/10.1111/jmg.12626
  4. Smeller L. // Biochim. Biophys. Acta. 2021 V. 1595 № 1—2. P. 11. http://dx.doi.org/10.1016/S0167-4838(01)00332-6
  5. Fischer F.D., Harrington M.J., Fratzl P. // New J. Phys. 2013. V. 15. № 065004. doi.org/10.1088/1367-2630/15/6/065004
  6. Успенская И.А. Воскова А.Л., Коваленко Н.А. и др. // Журн. физ. химии. 2019. № 10. С. 1445. doi.org/10.1134/S0044453719100327
  7. Dhar S., Kumar V., Choudhury T., Shivashankar S.A., Raghavan S. // Phys. Chem. Chem. Phys. 2016. V. 18. P. 14918. doi.org/10.1039/c6cp01617k
  8. Викулова Е.С., Сысоев С.В., Сартакова А.В. и др. // Журн. неорган. химии. 2023. T. 68. № 2. C. 167. doi.org/10.31857/S0044457X22601560
  9. Sysoev S.V., Mareev A.V., Tsyrendorzhieva I.P. et al. // Russ. J. Gen. Chem. 2021. V. 91. № 10. P. 1511. doi.org/10.1134/S1070363221100054
  10. Dhar S., Varade A., Shivashankar S.A. // Bull. Mater. Sci. 2011. V. 34. P. 11. https://doi.org/10.1007/s12034-011-0026-3
  11. Pousaneh E., Korb M., Assim K. et al. // Inorg. Chim. Acta. 2019. V. 287. P. 1. https://doi.org/10.1016/j.ica.2018.11.029
  12. Warwick M.E.A., Kaunisto K., Barreca D. et al. // ACS Appl. Mater. Interfaces. 2015. V. 7. № 16. P. 8667. doi.org/10.1021/acsami.5b00919
  13. Jiang Ch., Mei-Ng Sh., Leung C.W., Peng, P.W.T. // J. Mater. Chem. C. 2017. V. 5. № 252. doi.org/10.1039/C6TC03918A
  14. Requies J., Güemez M.B., Perez Gil S. et al. // J. Mater. Sci. 2013. V. 48. P 4813. doi.org/10.1007/s10853-013-7377-7
  15. Fugii E., Torii H., Tomozawa A. et al. // Jpn. J. Appl. Phys. 1995. V. 34. № 4A. P. 1937. doi.org/10.1143/jjap.34.1937
  16. Levish A., Joshi S., Winterer M. // Appl. Energy Combust. Sci. 2023. V. 15. P. 100177. https://doi.org/10.1016/j.jaecs.2023.100177
  17. Kan D., Sugano S., Kosugi Y. et al. // Jpn. J. Appl. Phys. Part 1. 2019. V. 58. № 9. P. 095504. doi.org/10.7567/1347-4065/ab39d1
  18. Dhar S., Pallavi A., Shivashankar S.A. // J. Cryst. Growth. 2016. V. 442. P. 41. https://doi.org/10.1016/j.jcrysgro.2016.02.019
  19. Герасимов П.А., Герасимова А.И., Федотова Н.Е. и др. // Изв. ВУЗов. 1992. С. 38.
  20. Naumov V.N., Bespyatov M.A. // J. Chem. Thermodynamics. 2008. № 40. P. 885. doi.org/10.1016/j.jct.2019.06.013
  21. Zherikova K.V., Verevkin S.P. // RSC Adv. 2020. № 10. P. 38158. doi.org/10.1039/D0RA06880B
  22. Сысоев С.В., Ванина Н.С., Трубин С.В., и др. // Исследовано в России. 2001. № 23. С. 237.
  23. Zhilina M.N., Karyakin N.V., Maslova V.A. et. al. // Rus. J. Phys. Chem. 1987. V. 61. P. 1633.
  24. Беспятов М.А. Исследование термодинамических свойств бета-дикетонатов металлов методом низкотемпературной калориметрии: дис. канд. физ.-мат. наук. Новосибирск: ИНХ СО РАН, 2006. 130 c.
  25. Кузнецов Ф.А., Воронков М.Г., Борисов В.О. и др. // Интеграционные проекты СО РАН. Вып. 37. Н.: Изд-во СО РАН, 2013. 176 с.
  26. Киселева Н.Н. Компьютерное конструирование неорганических соединений: использование баз данных и методов искусственного интеллекта. М.: Наука, 2005. С. 13.
  27. Кузнецов Ф.А., Буждан Я.М., Коковин Г.А. // Изв. СО АН СССР. Сер. хим. наук. 1975. № 2. Вып. 1. С. 24.
  28. Гурвич Л.В., Вейц И.В., Медведев В.А. и др. Термодинамические свойства индивидуальных веществ. M.: Наука, 1978—1982. Т. 1—4.
  29. Федотова Н.Е., Морозова Н.Б., Игуменов И.К., и др. // Координац. химия. 1993. Т. 19. № 8. С. 622.
  30. Naumov V.N., Frolova G.I., Nogteva V.V. // Chem. Sustainable Dev. 2000. V. 8. P. 243.
  31. Kuzin T.M., Bespyatov M.A., Naumov V.N., et. al. // Thermochim. Acta. 2015. V. 602. P. 49. https://doi.org/10.1016/j.tca.2015.01.008
  32. Makarenko A.M., Trubin S.V., Zherikova K.V. // Coatings. 2023. № 13. P. 1458. https://doi.org/10.3390/coatings13081458
  33. Schnepp Z., Wimbush S.C., Antonietti M. et al. // Chem. Mater. 2010. V. 22. N. 18. P. 5340. doi.org/10.1021/cm101746z
  34. Li Y., Li Z., Ahsen A. et al. // ACS Catal. 2019. V. 9. № 2. P. 1264. https://doi.org/10.1021/acscatal.8b03684
  35. Dhara S., Rastogi A.C., Das B.K. // Bull. Mater. Sci. 1999. V. 17. № 4. P. 367. https://doi.org/10.1007/BF02745224
  36. Rastogi A.C. Dhara S., Das B.K. // J. Electrochem. Soc. 1995. V. 142. P. 3148. doi.org/10.1149/1.2048703
  37. Pallavi A., Shivashankar S.A. // RSC Adv. 2015. № 5. P. 59463. https://doi.org/10.1039/C5RA07472J

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025