Modeling the influence of H2S and CO2 concentrations on hydrate formation of a mixture approximating natural gas
- Authors: Kudryavtseva M.S.1, Petukhov A.N.1, Shablykin D.N.1, Stepanova E.A.1
-
Affiliations:
- National Research Lobachevsky State University of Nizhny Novgorod
- Issue: Vol 99, No 6 (2025)
- Pages: 887-894
- Section: ХЕМОИНФОРМАТИКА И КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ
- Submitted: 26.09.2025
- Published: 15.06.2025
- URL: https://cardiosomatics.orscience.ru/0044-4537/article/view/691386
- DOI: https://doi.org/10.31857/S0044453725060085
- EDN: https://elibrary.ru/hhdxrl
- ID: 691386
Cite item
Abstract
The application of energy-efficient and environmentally safe technology of gas hydrate crystallization for purification of natural gas from hydrogen sulfide (H2S) and carbon dioxide (CO2) is considered. Thermodynamic modeling of the influence of H2S and CO2 concentrations from 1.00 to 20.00 mol. % on gas hydrate dissociation pressures and filling of gas hydrate cavities with the gas mixture CH4 — C2H6 — C3H8 — n-C4H10 — CO2 — H2S — N2 in the temperature range of 273.15—283.15 K has been carried out. It is obtained that increasing the concentration of H2S leads to a significant decrease in the dissociation pressures of gas hydrates. The filling of small gas hydrate cavities with H2S molecules reaches 0.91. Increasing the concentration of CO2 leads to a slight increase in the dissociation pressures of gas hydrates. It is found that CO2 is poorly concentrated in the gas hydrate phase of the considered gas mixture. To extract CO2 it is necessary to apply multiple gas hydrate crystallization or to use natural gas deposits with low concentrations of C3H8.
About the authors
M. S. Kudryavtseva
National Research Lobachevsky State University of Nizhny Novgorod
Email: kudryavtseva.m.s@yandex.ru
Nizhny Novgorod, Russia
A. N. Petukhov
National Research Lobachevsky State University of Nizhny NovgorodNizhny Novgorod, Russia
D. N. Shablykin
National Research Lobachevsky State University of Nizhny NovgorodNizhny Novgorod, Russia
E. A. Stepanova
National Research Lobachevsky State University of Nizhny NovgorodNizhny Novgorod, Russia
References
- Speight J.G. Natural gas: A basic handbook. Cambridge, Gulf Professional Publishing, 2018. 462 p.
- Hafezi R., Akhavan A.N., Pakseresht S. et al. // Energy. 2021. V. 224. № 120167.
- Мишин В.М. Переработка природного газа и конденсата. М.: Академия, 1999. 448 с.
- Соловьев Н.Н., Салина Л.С., Скоробогатов В.А. // Вести газовой науки. 2016. Т. 25. № 1. С. 125.
- Bellussi G., Broccia P., Carati A. et al. // Microporous Mesoporous Mater. 2011. V. 146. № 1—3. P. 134.
- Пат. 2485998 (РФ).
- Бык С.Ш., Макогон Ю.Ф., Фомина В.И. Газовые гидраты. М.: Химия, 1980. 296 с.
- Qin J., Kuhs W.F. // AIChE J. 2013. V. 59. № 6. P. 2155.
- Bhawangirkar D.R., Adhikari J., Sangwai J.S. // J. Chem. Thermodyn. 2018. V. 117. P. 180.
- Ward Z.T., Deering C.E., Marriott R.A. et al. // J. Chem. Eng. Data. 2015. V. 60. № 2. P. 403.
- Liang S., Kusalik P.G. // Chem. Sci. 2011. V. 2. № 7. P. 1286.
- Circone S., Stern L.A., Kirby S.H. et al. // J. Phys. Chem. B. 2003. V. 107. № 23. P. 5529.
- Ma Z.W., Zhang P., Bao H.S. et al. // Renew. Sustain. Energy Rev. 2016. V. 53. P. 1273.
- Duc N.H., Chauvy F., Herri J.-M. // Energy Convers. Manag. 2007. V. 48. № 4. P. 1313.
- Eslamimanesh A., Mohammadi A.H., Richon D. et al. // J. Chem. Thermodyn. 2012. V. 46. P. 62.
- Dashti H., Lou X. // TMS Annu. Meet. Exhib. Energy Technol. 2018. P. 3.
- Castellani B., Rossi F., Filipponi M. et al. // Biomass Bioenergy. 2014. V. 70. P. 330.
- Kim K., Kim K.S., Lee J.E. et al. // Sep. Purif. Technol. 2018. V. 200. P. 29.
- Ballard A.L., Sloan E.D. // Fluid Phase Equilib. 2002. V. 194—197. P. 371.
- Parrish W.R., Prausnitz J.M. // Ind. Eng. Chem. Process Des. Dev. 1972. V. 11. № 1. P. 26.
- Пат. 2576738 (РФ).
- Gallagher J.E. Natural gas measurement handbook. Houston: Gulf Publishing Company, 2006. 496 p.
- Liu G., Zhu L., Cao W. et al. // ACS Omega. 2021. V. 6. № 40. P. 26180.
- Широкова Г.С., Елистратов М.В. // Транспорт на альтернативном топливе. 2011. Т. 20. № 2. С. 42.
- Sloan E.D., Koh C.A. Clathrate hydrates of natural gases. Boca Raton: CRC Press, 2008. 721 p.
- Castellan G.W. Physical chemistry. 3rd ed. London: Addison-Wesley Publishing Company, 1983. 1038 p.
- John V.T., Papadopoulos K.D., Holder G.D. // AIChE J. 1985. V. 31. № 2. P. 252.
- Chen G.J., Guo T.M. // Chem. Eng. J. 1998. V. 71. № 2. P. 145.
- Klauda J.B., Sandler S.I. // Ind. Eng. Chem. Res. 2001. V. 40. № 20. P. 4197.
- Намиот А.Ю. Растворимость газов в воде: Справочное пособие. Москва: Недра, 1991. 167 с.
- Mortimer R.G. Physical chemistry. 3rd ed. London: Academic Press, 2008. 1392 p.
- Кричевский И.Р., Казарновский Я.С. // Журн. физ. химии. 1939. Т. 13. № 3. С. 378.
- Aspen physical property system V 8.4. Burlington. 2013. 248 p.
- Holder G.D., John V.T. // Fluid Phase Equilib. 1983. V. 14. P. 353.
- Sato E., Miyoshi T., Ohmura R. et al. // Jpn. J. Appl. Phys. 2007. V. 46. № 9R. P. 5944.
- Strobel T.A., Koh C.A., Sloan E.D. // Fluid Phase Equilib. 2009. V. 280. № 1—2. P. 61.
- Sergeeva M.S., Mokhnachev N.A., Shablykin D.N. et al. // J. Nat. Gas Sci. Eng. 2021. Vol. 86. № 103740.
- Seo Y., Lee S., Lee J. // Chem. Eng. Trans. 2013. V. 32. P. 163.
- Sun J., Xin Y., Chou I—M. et al. // J. Chem. Eng. Data. 2020. V. 65. № 8. P. 3884.
- Holder G.D., Corbin G., Papadopoulos K.D. // Ind. Eng. Chem. Fundam. 1980. V. 19. № 3. P. 282.
- Avlonitis D. // Chem. Eng. Sci. 1994. V. 49. № 8. P. 1161.
- Lee J.H., Kim S.H., Kang J.W. et al. // Fluid Phase Equilib. 2016. V. 409. P. 136.
- Маслов В.П. // Теоретическая и математическая физика. 2008. Т. 156. № 2. С. 303.
- McKoy V., Sinanoğlu O. // J. Chem. Phys. 1963. V. 38. № 12. P. 2946.
Supplementary files
