Влияние геометрического потенциала на собственную функцию и собственное значение энергии состояния в скрученной узкой графеновой наноленте

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Исходя из введенной геликоидальной системы координат для скрученной в виде геликоиды наноленты получено выражение для эффективного геометрического потенциала. На основе эффективного геометрического потенциала для уравнения Шредингера исследована графеновая нанолента конечной длины с краями типа “кресло”, находящаяся под действием внешнего электрического поля, параллельного краям наноленты, рассчитаны уровни энергии и волновые функции электронов в окрестности точки Дирака. Показано, что в поперечном направлении существует единственное состояние.

Об авторах

Н. Р. Садыков

Снежинский физико-технический институт национального исследовательского ядерного университета “МИФИ”

Email: n.r.sadykov@rambler.ru
Россия, 456776, Челябинская область, Снежинск

Ю. А. Петрова

Снежинский физико-технический институт национального исследовательского ядерного университета “МИФИ”

Email: n.r.sadykov@rambler.ru
Россия, 456776, Челябинская область, Снежинск

И. А. Пилипенко

Снежинский физико-технический институт национального исследовательского ядерного университета “МИФИ”

Email: n.r.sadykov@rambler.ru
Россия, 456776, Челябинская область, Снежинск

Р. С. Храбров

Снежинский физико-технический институт национального исследовательского ядерного университета “МИФИ”

Email: n.r.sadykov@rambler.ru
Россия, 456776, Челябинская область, Снежинск

С. Н. Скрябин

Снежинский физико-технический институт национального исследовательского ядерного университета “МИФИ”

Автор, ответственный за переписку.
Email: n.r.sadykov@rambler.ru
Россия, 456776, Челябинская область, Снежинск

Список литературы

  1. Jensen H., Koppe H. // Ann. Phys. 1971. V. 63. № 2. P. 586. https://doi.org/10.1016/0003-4916(71)90031-5
  2. Costa R.C.T. // Phys. Rev. A. 1981. V. 23. № 4. P. 1982. https://doi.org/10.1103/PhysRevA.23.1982
  3. Cantele G., Ninno D., Iadonisi G. // Phys. Rev. B. 2000. V. 61. P. 3730. https://doi.org/10.1103/PhysRevB.61.13730
  4. Aoki H., Koshino M., Takeda D. et al. // Ibid. 2001. V. 65. P. 035102. https://doi.org/10.1103/PhysRevB.65.035102
  5. Encinosa M., Mott L. // Phys. Rev. A. 2003. V. 68. P. 014102. https://doi.org/10.1103/PhysRevA.68.014102
  6. Gravesen J., Willatzen M. // Ibid. 2005. V. 72. P. 032108. https://doi.org/10.1103/PhysRevA.72.032108
  7. Marchi A., Reggiani S., Rudan M., Bertoni A. // Phys. Rev. B. 2005. V. 72. P. 035403. https://doi.org/10.1103/PhysRevB.72.035403
  8. Ведерников А.И., Чаплик А.В. // ЖЭТФ. 2000. Т. 117. № 2. С. 449. http://www.jetp.ac.ru/cgi-bin/r/index/r/117/2/p449?a=list.
  9. Ortix C., van den Brink J. // Phys. Rev. B. 2010. V. 81. P. 165419. https://doi.org/10.1103/PhysRevB.81.165419
  10. Садыков Н.Р., Юдина Н.В. // Журн. технич. физики. 2020. Т. 90. Вып. 3. С. 387. https://doi.org/10.21883/JTF.2020.03.48921.62-19
  11. Atanasov V., Saxena A. // Phys. Rev.B. 2015. B. V. 92. P. 035440. https://doi.org/journals.aps.org/prb/abstract/10.1103/ PhysRevB.92.035440.
  12. Mohanty N., Moore D., Xu Z. et al. // Nat. Commun. 2012. V. 3. P. 844. https://doi.org/10.1038/ncomms1834
  13. Dandoloff R., Truong T.T. // Phys. Lett. A. 2004. V. 325. P. 233. https://doi.org/10.1016/j.physleta.2004.03.050
  14. Atanasov V., Dandoloff R., Saxena A. // Phys. Rev. B. 2009. V. 79. P. 033404. https://doi.org/10.1103/PhysRevB.79.033404
  15. Burgess M., Jensen B. // Phys. Rev. A. 1993. V. 48. P. 1861. https://doi.org/10.1103/PhysRevA.48.1861
  16. Atanasov V., Saxena A. // Phys. Rev. B. 2010. V. 81. P. 205409. https://doi.org/10.1103/PhysRevB.81.205409
  17. Joglekar Y.N. and Saxena A. // Ibid. 2009. V. 80. P. 153405-4. https://doi.org/10.1103/PhysRevB.80.153405
  18. Atanasov V., Saxena A.// J. Phys. Condens. Matter. 2011. V. 23. P. 175301.
  19. Yang S.H. // Appl. Phys. Lett. 2020. V. 116. P. 120502 .
  20. Yang S.H., Naaman R., Paltiel Y., Parkin S.S.P. // Nat. Rev. Phys. 2021. V. 3. P. 328.
  21. Michaeli K., Kantor-Uriel N., Naamanm R., and Waldeck D.H.// Chem. Soc. Rev. 2016. V. 45. P. 6478
  22. Naaman R. and Waldeck D.H.// Annu. Rev. Phys. Chem. 2015. V. 66. P. 263.
  23. D’yachkova P.N. and D’yachkov E.P. // Appl. Phys. Lett. 2022. V. 120. P. 173101. https://doi.org/10.1063/5.008690
  24. Kiricsi I., Fudala A., Konya et al. // Appl. Catal. 2000. A. 203. L. 1.
  25. De Crescenzi M., Castrucci P., Scarselli M. et al. // Appl. Phys. Lett. 2005. V. 86. P. 231901.
  26. Morata A., Pacios M., Gadea G. et al. // Nat. Commun. 2018. V. 9. P. 4759.
  27. Wu H., Chan G., and Choi J.W. // Nat. Nanotechnol. 2012. V. 7. P. 310.
  28. Chan C.K., Peng H., Liu G. et al. // Ibid. 2008. V. 3. P. 31.
  29. Sadykov N.R., Muratov E.T., Pilipenko I.A., Aporoski A.V. // Physica E: Low-dimensional Systems and Nanostructures. 2020. V. 120. P. 114071. https://doi.org/10.1016/j.physe.2020.114071
  30. Dubrovin B.A., Novikov S.P., and Fomenko A.T. // Modern Geometry: Methods and Applications, 2nd ed. M.: Fizmatlit, 1986.
  31. Spivak M. A Comprehensive Introduction to Differential Geometry Publish or Perish, Boston, 1999.
  32. Sadykov N.R. Quantum Electronics. 1996. V. 26 (3). P. 271. http://iopscience.iop.org/1063-7818/26/3/A24.
  33. Будак Б.М., Самарский А.А., Тихонов А.Н. Сборник задач по математической физике. 4-е изд., испр. М.: ФИЗМАТЛИТ, 2004. 688 с. ISBN 5-9221-0311-3.
  34. Onipko A. and Malysheva L. // Phys. Status Solidi. 2017. V. 255. P. 1700248. https://doi.org/10.1002/pssb.201700248
  35. Boyd R.W. Nonlinear Optics. Academic Press, San Diego (2003).
  36. Landau L.D., Lifshitz E.M. Course of Theoretical Physics. V. 3: Quantum Mechanics: Non-Relativistic Theory, 4th ed. (Oxford Univ. Press, Oxford, 1980) M.: Nauka, 1989.
  37. Никифоров А.Ф., Уваров В.Б. Специальные функции математической физики. М.: Физматлит, 1978.
  38. Садыков Н.Р. // Теоретическая и математическая физика. 2014. Вып. 180. № 3. С. 368. https://doi.org/10.4213/tmf8642

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (221KB)
3.

Скачать (59KB)

© Н.Р. Садыков, Ю.А. Петрова, И.А. Пилипенко, Р.С. Храбров, С.Н. Скрябин, 2023