Voltammetric sensor based on tin dioxide nanoparticles for the determination of taxifolin

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

A voltammetric sensor based on a glassy carbon electrode (GCE) modified with tin dioxide nanoparticles dispersed in N-hexadecylpyridinium bromide (NPs SnO2) was developed for the determination of taxifolin. Modification of the electrode surface provides an increase in the reversibility of the electrode reaction, as well as a significant increase in the redox currents compared to GCE (2.3 and 3.3 times for the anodic and cathodic peaks, respectively). The morphology of the electrode surface according to scanning electron microscopy data is represented by uniformly distributed on the electrode surface SnO2 NPs of spherical shape with a diameter of 20-40 nm, which leads to a 3.9-fold increase in the effective area of the electrode and a 143-fold increase in the heterogeneous electron transfer rate constant. The electrooxidation of taxifolin was found to proceed with the participation of protons. Mixed control with diffusion and adsorption contributions was confirmed for the electrode reaction. In differential pulse mode against Britton-Robinson buffer with pH 6.0, the range of determined taxifolin contents is 0.075-25 μM with a detection limit of 70.7 nM. The obtained characteristics are comparable to other electrochemical approaches, but the proposed approach is simpler and more rapid, and does not require complex modification of the electrode. The developed sensor was successfully applied in the analysis of dihydroquercetin (taxifolin) based bioadditives. The results obtained were compared with the data of coulometric titration by electrogenerated bromine.

全文:

受限制的访问

作者简介

G. Ziyatdinova

Kazan Federal University

编辑信件的主要联系方式.
Email: Ziyatdinovag@mail.ru

A.M. Butlerov Chemical Institute

俄罗斯联邦, Kazan

A. Tarabukina

Kazan Federal University

Email: Ziyatdinovag@mail.ru

A.M. Butlerov Chemical Institute

俄罗斯联邦, Kazan

参考

  1. Зиятдинова Г.К., Будников Г.К. Природные фенольные антиоксиданты в биоаналитической химии: состояние проблемы и перспективы развития // Успехи химии. 2015. Т. 84. № 2. C. 194. (Ziyatdinova G.K., Budnikov H.C. Natural phenolic antioxidants in bioanalytical chemistry: State of the art and prospects of development // Russ. Chem. Rev. 2015. V. 84. № 2. P. 194. https://doi.org/10.1070/RCR4436)
  2. Das A., Baidya R., Chakraborty T., Samanta A.K., Roy S. Pharmacological basis and new insights of taxifolin: A comprehensive review // Biomed. Pharmacother. 2021. V. 142. Article 112004. https://doi.org/10.1016/j.biopha.2021.112004
  3. Jain S., Vaidya A. Comprehensive review on pharmacological effects and mechanism of actions of taxifolin: A bioactive flavonoid // Pharmacol. Res. Modern Chin. Med. 2023. V. 7. Article 100240. https://doi.org/10.1016/j.prmcm.2023.100240
  4. Liu Y., Shi X., Tian Y., Zhai S., Liu Y., Xiong Z., Chu S. An insight into novel therapeutic potentials of taxifolin // Front. Pharmacol. 2023. V. 14. Article 1173855. https://doi.org/10.3389/fphar.2023.1173855
  5. Jomová K., Hudecova L., Lauro P., Simunkova M., Alwasel S.H., Alhazza I.M., Valko M. A Switch between antioxidant and prooxidant properties of the phenolic compounds myricetin, morin, 3′,4′-dihydroxyflavone, taxifolin and 4-hydroxy-coumarin in the presence of copper(II) ions: A spectroscopic, absorption titration and DNA damage study // Molecules. 2019. V. 24. № 23. Article 4335. https://doi.org/10.3390/molecules24234335
  6. Pierini G.D., Maccio S.A., Robledo S.N., Ferrari A.G.-M., Banks C.E., Fernández H., Zon M.A. Screen-printed electrochemical-based sensor for taxifolin determination in edible peanut oils // Microchem. J. 2020. V. 159. Article 105442. https://doi.org/10.1016/j.microc.2020.105442
  7. Ziyatdinova G., Aytuganova I., Nizamova A., Morozov M., Budnikov H. Cyclic voltammetry of natural flavonoids on MWNT-modified electrode and their determination in pharmaceuticals // Collect. Czech. Chem. Commun. 2011. V. 76. № 12. P. 1619. https://doi.org/10.1135/cccc2011115
  8. Wu Y., Lv M., Li B., Ge J., Gao L. A rapid, green and controllable strategy to fabricate electrodeposition of reduced graphene oxide film as sensing materials for determination of taxifolin // NANO: Brief Rep. Rev. 2015. V. 10. № 3. Article 1550044. https://doi.org/10.1142/S1793292015500447
  9. Wang F., Wu Y., Lu K., Ye B. A sensitive voltammetric sensor for taxifolin based on graphene nanosheets with certain orientation modified glassy carbon electrode // Sens. Actuators B. 2015. V. 208. P. 188. https://doi.org/10.1016/j.snb.2014.11.008
  10. Wang Q., Wang L., Li G., Ye B. A simple and sensitive method for determination of taxifolin on palladium nanoparticles supported poly (diallyldimethylammoniumchloride) functionalized graphene modified electrode // Talanta. 2017. V. 164. P. 323. https://doi.org/10.1016/j.talanta.2016.11.045
  11. Xu Y., Dong C., Li D., Liu P., Cao Q., Sun Y., Wei Y., Lu Y., Lu J., Zhang X. The sensing performance toward taxifolin and lithium storage property based on nickel-metal organic frameworks and carbon nanotubes composite // Inorg. Chem. Commun. 2021. V. 126. Article 108446. https://doi.org/10.1016/j.inoche.2021.108446
  12. Zhang X., Cao Q., Guo Z., Znahg M., Zhou M., Zhai Z., Xu Y. Self-assembly of MoS2 nanosheet on functionalized pomelo peel derived carbon and its electrochemical sensor behavior toward taxifolin // Inorg. Chem. Commun. 2021. V. 129. Article 108631. https://doi.org/10.1016/j.inoche.2021.108631
  13. Zhang X., Li D., Dong C., Shi J., Sun Y., Ye B., Xu Y. Molybdenum sulfide-based electrochemical platform for high sensitive detection of taxifolin in Chinese medicine // Anal. Chim. Acta. 2020. V. 1099. P. 85. https://doi.org/10.1016/j.aca.2019.11.057
  14. Huang D., Yang L., Li X.l., Zou L., Ye B. A new electrochemical sensor for taxifolin based on RGO-Co3S4@MoS2 modified electrode // J. Electroanal. Chem. 2019. V. 851. Article 113473. https://doi.org/10.1016/j.jelechem.2019.113473
  15. Ziyatdinova G., Gimadutdinova L., Antonova T., Grigoreva I., Yakupova E. The analytical capabilities of electrochemical sensors based on transition metal oxide nanomaterials // Eng. Proc. 2023. V. 48. № 1. Article 13. https://doi.org/10.3390/CSAC2023-14916
  16. Sharma A., Ahmed A., Singh A., Oruganti S.K., Khosla A., Arya S. Recent advances in tin oxide nanomaterials as electrochemical/chemiresistive sensors // J. Electrochem. Soc. 2021. V. 168. № 2. Article 027505. https://doi.org/10.1149/1945-7111/abdee8
  17. Matussin S., Harunsani M.H., Tan A.L., Khan M.M. Plant-extract-mediated SnO2 nanoparticles: synthesis and applications // ACS Sustainable Chem. Eng. 2020. V. 8. № 8. P. 3040. https://doi.org/10.1021/acssuschemeng.9b06398
  18. Зиятдинова Г.К., Антонова Т.С., Мубаракова Л.Р., Будников Г.К. Амперометрический сенсор на основе наночастиц диоксида олова и цетилпиридиния бромида для определения ванилина // Журн. аналит. химии. 2018. Т. 73. № 8. C. 632. https://doi.org/10.1134/S0044450218080121 (Ziyatdinova G.K., Antonova T.S., Mubarakova L.R., Budnikov H.C. An amperometric sensor based on tin dioxide and cetylpyridinium bromide nanoparticles for the determination of vanillin // J. Anal. Chem. 2018. V. 73. № 8. P. 801. https://doi.org/10.1134/S1061934818080129)
  19. Ziyatdinova G., Yakupova E., Davletshin R. Voltammetric determination of hesperidin on the electrode modified with SnO2 nanoparticles and surfactants // Electroanalysis. 2021. V. 33. № 12. P. 2417. https://doi.org/10.1002/elan.202100405
  20. Ziyatdinova G., Budnikov H. Analytical capabilities of coulometric sensor systems in the antioxidants analysis // Chemosensors. 2021. V. 9. № 5. Article 91. https://doi.org/10.3390/chemosensors9050091
  21. Bhattacharjee A., Ahmaruzzaman M., Sinha T. Surfactant effects on the synthesis of durable tin-oxide nanoparticles and its exploitation as a recyclable catalyst for the elimination of toxic dye: A green and efficient approach for wastewater treatment // RSC Adv. 2014. V. 4. № 93. P. 51418. https://doi.org/10.1039/C4RA08461F
  22. Boran F., Çetinkaya S., Şahin M. Effect of surfactant types on the size of tin oxide nanoparticles // Acta. Phys. Pol. A. 2017. V. 132. № 3. P. 546. http://doi.org/10.12693/APhysPolA.132.546
  23. Parry R.A., Dubey K., Modi A., Gaur N.K. Effect of surfactants on the structural, microstructural, optical, and photoluminescence characteristics of nanostructured SnO2 compounds // Results in Optics. 2024. V. 16. Article 100677. https://doi.org/10.1016/j.rio.2024.100677
  24. Bard A.J., Faulkner L.R. Electrochemical Methods: Fundamentals and Applications, 2nd Ed. New York: John Wiley & Sons, 2001. 864 p.
  25. Ziyatdinova G., Antonova T., Vorobev V., Osin Y., Budnikov H. Selective voltammetric determination of α-lipoic acid on the electrode modified with SnO2 nanoparticles and cetyltriphenylphosphonium bromide // Monatsh. Chem. 2019. V. 150. № 3. P. 401. https://doi.org/10.1007/s00706-018-2341-5
  26. Lasia A. Electrochemical Impedance Spectroscopy and Its Applications. New York: Springer, 2014. 36 p.
  27. Randviir E.P. A cross examination of electron transfer rate constants for carbon screen-printed electrodes using electrochemical impedance spectroscopy and cyclic voltammetry // Electrochim. Acta. 2018. V. 286. P. 179. https://doi.org/10.1016/j.electacta.2018.08.021
  28. Slabbert N.P. Ionisation of some flavanols and dihydroflavonols // Tetrahedron. 1977. V. 33. № 7. P. 821. https://doi.org/10.1016/0040-4020(77)80200-7
  29. Moura F.C.S., dos Santos Machado C.L., F.R. Paula, Couto A.G., Ricci M., Cechinel-Filho V., Bonomini T.J., Sandjo L.P., Bresolin T.M.B. Taxifolin stability: In silico prediction and in vitro degradation with HPLC-UV/UPLC–ESI-MS monitoring // J. Pharm. Anal. 2021. V. 11. № 2. P. 232. https://doi.org/10.1016/j.jpha.2020.06.008
  30. Chernikov D.A., Shishlyannikova T.A., Kashevskii A.V., Bazhenov B.N., Kuzmin A.V., Gorshkov A.G., Safronov A.Y. Some peculiarities of taxifolin electrooxidation in the aqueous media: The dimers formation as a key to the mechanism understanding // Electrochim. Acta. 2018. V. 271. P. 560.
  31. Зиятдинова Г.К., Низамова А.М., Будников Г.К. Гальваностатическая кулонометрия в анализе природных полифенолов и ее применение в фармации // Журн. аналит. химии. 2010. Т. 65. № 11. С. 1202. (Ziyatdinova G.K., Nizamova A.M., Budnikov G.K. Galvanostatic coulometry in the analysis of natural polyphenols and its use in pharmacy // J. Anal. Chem. 2010. V. 65. № 11. P. 1176. https://doi.org/10.1134/S1061934810110146)

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Cyclic voltammograms of 50 µM taxifolin (2) in Britton–Robinson buffer at pH 2.0 (1) on BPE (a) and BPE/NC SnO2–N-HPC (b). Scan rate 100 mV/s.

下载 (116KB)
3. Fig. 2. Surface morphology of BPE (a) and BPE/NC SnO2–N-HPC (b) from scanning electron microscopy. Magnification ×20000.

下载 (361KB)
4. Fig. 3. (a) Cyclic voltammograms of 1.0 mM [Fe(CN)6]4– on BPE (2) and BPE/NC SnO2–N-HPC (3) in 0.1 M KCl (1)...

下载 (167KB)
5. Fig. 4. Effect of pH of background electrolyte (a) on redox potentials and (b) on currents of 50 µM taxifolin on BPE/NC SnO2–N-HPC...

下载 (117KB)
6. Fig. 5. Cyclic voltammograms of 25 µM taxifolin on BPE/NC SnO2–N-HPC...

下载 (81KB)
7. Fig. 6. Electrooxidation scheme of taxifolin on BPE/NC SnO2–N-HPC.

下载 (295KB)
8. Fig. 7. Voltammetric response of the sensor with baseline correction for 0.075–25 µM taxifolin...

下载 (72KB)
9. Fig. 8. Voltammetric response of the sensor to 25 µL of dietary supplement solution...

下载 (50KB)

版权所有 © Russian Academy of Sciences, 2025