MULTI-AGENT TECHNOLOGY IN THE EARLY DIAGNOSIS OF SKIN MELANOMA
- Authors: Neretin E.Y.1, Minaev Y.L.2, Akulov V.A.3
-
Affiliations:
- Samara Regional Clinical Oncology Center
- Non-governmental educational institution of higher professional education «REAVIZ»
- Samara State Technical University
- Issue: Vol 62, No 6 (2018)
- Pages: 331-335
- Section: LETTERS TO EDITOR
- Submitted: 25.10.2024
- URL: https://cardiosomatics.orscience.ru/0044-197X/article/view/637629
- DOI: https://doi.org/10.18821/0044-197Х-2018-62-6-331-335
- ID: 637629
Cite item
Full Text
Abstract
The problems of the use of existing forms of organization in health care, focused on timely diagnosis of tumors of external localization, are analyzed. The urgency of the problem and the need to improve its effectiveness are determined by a number of factors, including numerous publications in Russia and abroad, as well as many years of experience of the authors. An approach based on interdisciplinary technology (medicine, software engineering) using multi-agent methods is proposed. The concept of technology and the model of the system composition consisting of an artificial neural network, an expert system, a database, a knowledge base, remote access means and information protection were developed. As the criteria for the effectiveness of the system, entropic actions of various groups of users are offered - doctors of profile and non-profile specialties in the space of situations. The end result of the diagnosis is survival. The proposed technology is applied in the educational process, designed for a wide range of users, including students, doctors, administrative staff, and average medical personnel. A methodology has been developed that contains theoretical and practical material intended for an extended version of the analysis of errors and recognition of complex scenes possible in the diagnosis of skin melanoma.
About the authors
E. Yu. Neretin
Samara Regional Clinical Oncology Center
Author for correspondence.
Email: evg.neretin2002@mail.ru
Russian Federation
Yu. L. Minaev
Non-governmental educational institution of higher professional education «REAVIZ»
Email: noemail@neicon.ru
Russian Federation
V. A. Akulov
Samara State Technical University
Email: noemail@neicon.ru
Russian Federation
References
- Garbe C., Leiter U. Melanoma epidemiology and trends. Clin. Dermatol. 2009; 27(1): 3-9
- Глущенко А.И., Еременко Ю., Цуканов М.А. Мультиагентные технологии как основа проектирования системы-советчика диспетчера энергосистемы. Фундаментальные исследования. 2013; 15(10): 3305-9.
- Минаев А.А., Иващенко А.В. Мультиагентные технологии сбора и обработки информации в задачах медицинской диагностики. Труды международного симпозиума «Надежность и качество». 2014; 1: 49-51.
- Drulyte I., Ruzgas T., Raisutis R., Valiukeviciene S., Linkeviciute G. Application of automatic statistical post-processing method for analysis of ultrasonic and digital dermatoscopy images. Libyan J. Med. 2018; 13(1): 1479600. doi: 10.1080/19932820.2018.1479600.
- Mar V.J., Soyer H.P. Artificial intelligence for melanoma diagnosis: How can we deliver on the promise? Ann. Oncol. 2018; 29(8): 1625-8. doi: 10.1093/annonc/mdy193.
- Jaworek-Korjakowska J., Kłeczek P. Automatic Classification of Specific Melanocytic Lesions Using Artificial Intelligence. Biomed Res. Int. 2016; 2016: 8934242. doi: 10.1155/ 2016/8934242.
- Blum A., Luedtke H., Ellwanger U., Schwabe R., Rassner G., Garbe C. Digital image analysis for diagnosis of cutaneous melanoma. Development of a highly effective computer algorithm based on analysis of 837 melanocytic lesions. Br. J. Dermatol. 2004; 151(5): 1029-38.
- Patel J.K., Konda S., Perez O.A., Amini S., Elgart G., Berman B. Newer technologies/techniques and tools in the diagnosis of melanoma. Eur. J. Dermatol. 2008; 18(6): 617-31. doi: 10.1684/ejd.2008.0508.
- Дaвыдов М.И., Aкceль E.М. Статистика злокачественных новообразований в России и странах CНГ в 2012 г. М.: РОНЦ; 2014
- Siegel R., Naishadham D., Jemal A. Cancer statistics. CA Cancer J. Clin. 2012; 62(1): 10-29.
- Dick V., Tschandl P., Sinz C., Blum A., Kittler H. Image-based computer diagnosis of melanoma. Hautarzt. 2018; 69(7): 591-601. (in German)
- Fuller C., Cellura A.P., Hibler B.P., Burris K. Computer-assisted diagnosis of melanoma. Semin. Cutan. Med. Surg. 2016; 35(1): 25-30. doi: 10.12788/j.sder.2016.004.
Supplementary files
