Культивирование мезенхимных стволовых/стромальных клеток из жировой ткани лошади в бессывороточной среде

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Мезенхимные стволовые/стромальные клетки (МСК), выделенные из жировой ткани (ЖТ) лошадей, представляют собой перспективный материал для создания биоветеринарных продуктов с целью профилактики и лечения многих заболеваний. Производство этих клеток для клинического применения требует совершенствования условий бессывороточного культивирования. Микроокружение может оказывать влияние на свойства МСК. Считается, что требования к условиям культивирования без сыворотки крови животных являются видоспецифичными. Целью настоящего исследования было оценить коммерчески доступную бессывороточную среду (БС) MesenCult (STEMCELL Technologies, США), созданную для МСК человека, для культивирования МСК(ЖТ) лошади. Одну часть клеток размножали в течение 10 пассажей в стандартной среде ДМЕМ с низким содержанием глюкозы ( 1 г/л) и  10٪ сыворотки крови плодов коров (СКПК), а вторую – в БС. Результаты показывают, что размножение МСК лошади в БС (MesenCult), предназначенной для культивирования МСК человека, возможно, так как клетки хорошо к ней адаптируются и сохраняют свойства, характерные для клеток, которые культивируются в ДМЕМ с СКПК: морфологию, скорость роста, время удвоения и митотический индекс, клонообразующие способности, диплоидный набор хромосом, большое количество клеток с фенотипом CD٩0 (90.8%) и низкое с фенотипом CD31 (0.8%), CD34 (0.9%), а также потенции при индукции к дифференцировке в адипо-, остео- и хондорогенном направлениях. МСК(ЖТ) лошади демонстрировали стабильные характеристики после культивирования в течение 10 пассажей в БС, что обеспечивает многообещающую основу для их дальнейшего использования. Наши результаты демонстрируют, что среда MesenCult может быть альтернативой для бессывороточного культивирования МСК(ЖТ) лошади с целью их размножения в предклинических исследованиях.

Полный текст

Доступ закрыт

Об авторах

И. П. Савченкова

Федеральный научный центр – Всероссийский научно-исследовательский институт экспериментальной ветеринарии имени К.И. Скрябина и Я.Р. Коваленко РАН

Автор, ответственный за переписку.
Email: s-ip@mail.ru
Россия, Москва

Список литературы

  1. Коровина Д.Г., Юров К.П., Алексеенкова С.В., Савченкова Е.А., Савченкова И.П. 2017. Характеристика мультипотентных мезенхимных стволовых клеток, выделенных из пуповинной крови лошадей. Росс. Сельскохоз. наука. № 2. С. 5 1. (Korovina D.G., Yurov K.P., Alexeenkova S.V., Savchenkova E.A., Savchenkova I.P. 2017. Characterization of multipotent mesenchymal stem cells isolated from equine umbilical cord blood. Russian Agricultural Sci. V. 43. P. 262). https://doi.org/10.3103/S1068367417030090
  2. Коровина Д.Г., Юров К.П., Волкова И.М., Алексеенкова С.В., Васильева С.А., Савченкова Е.А., Савченкова И.П. 2015. Пуповинная кровь лошадей как источник мультипотентных мезенхимных стволовых клеток. Коневодство и конный спорт. № ٦. С. 3 1. (Korovina D.G., Yurov K.P., Volkova I.M., Alekseenkova S.V., Vasilyeva S.A., Savchenkova E.A., Savchenkova I.P. 2015. Equine umbilical cord blood as a source of multipotent mesenchymal stem cells. Horse breeding and equestrian sport. No. 6. P. 31).
  3. Паюшина О. В., Цомартова Д.А., Черешнева Е.В., Иванова М.Ю., Ломановская Т.А., Павлова М.С., Кузнецов С.Л. 2023. Активация эндогенных мезенхимных стромальных клеток как подход к регенерации тканей. Цитология. Т. 65. № 2. C. 119–130. (Payushina O. V., Tsomartova D.A., Chereshneva Ye.V., Ivanova M. u., Lomanovskaya T.A., Pavlova M.S., Kuznetsov S.L. 2023. Activation of endogenous mesenchymal stromal cells as an approach to tissue regeneration. Cell Tiss. Biol. (Tsitologiya). V. 17. No. 4. P. 328.) https://doi.org/10.1134/S1990519X23040065
  4. Тепляшин А.С., Коржикова С.В., Шарифуллина С.З., Чупикова Н.И., Ростовская М.С., Савченкова И.П. 2005. Характеристика мезенхимных стволовых клеток человека, выделенных из костного мозга и жировой ткани. Цитология. Т. 47. № 2. С. 130 (Tepliashin A.S., Korzhikova S.V., Sharifullina S.Z., Chupikova N.I., Rostovskaia M.S., Savchenkova I.P. 2005. Characteristics of human mesenchymal stem cells isolated from bone marrow and adipose tissue. Tsitologiya. V. 47. № 2. P.130.)
  5. Andrzejewska A., Lukomska B., Janowski M. 2019. Mesenchymal stem cells: from roots to boost. Stem Cells. V. 37. P. 855. https://doi.org/10.1002/stem.3016
  6. Bhat S., Viswanathan P., Chandanala S., Prasanna S.J., Seetharam R.N. 2021. Expansion and characterization of bone marrow derived human mesenchymal stromal cells in serum-free conditions. Sci. Rep. V. 11. P. 3403. https://doi.org/10.1038/s41598-021-83088-1
  7. Bianco P., Robey P.G., Simmons P.J. 2008. Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell. V. 2. P. 313. https://doi.org/10.1016/j.stem.2008.03.002
  8. Borjesson D.L., Peroni J.F. 2011. The regenerative medicine laboratory: facilitating stem cell therapy for equine disease. Clinics Lab. Med. V. 31. P. 109. https://doi.org/10.1016/j.cll.2010.12.001
  9. Caplan A.I. 2017. Mesenchymal stem cells: time to change the name! Stem Cells Transl. Med. V. 6. P. 1445. https://doi.org/10.1002/sctm.17-0051
  10. Bui H.T.H., Nguyen L.T, Than U.T.T. 2021. Influences of xeno-free media on mesenchymal stem cell expansion for clinical application. Tiss. Eng. Regen. Med. V. 18. P.15. https://doi.org/10.1007/s13770-020-00306-z
  11. Chen C., Hou X., Jing F., Wang T., Feng L., Kang Y.J. 2023. Alteration of ranscriptomic profile and antiseptic efficacy of adipose-derived mesenchymal stromal/stem cells under different culture conditions. Stem Cells Dev. V. 32. P. 75. https://doi.org/10.1089/scd.2022.0238
  12. Clark K.C., Kol A., Shahbenderian S., Granick J.L., Walker N.J., Borjesson D.L. 2016. Canine and equine mesenchymal stem cells grown in serum free media have altered immunophenotype. Stem Cell Rev. Rep. V.12 P. 245. https://doi.org/10.1007/s12015-015-9638-0
  13. Dam P.T.M., Hoang V.T., Bui H.T.H., Hang L.M., Hoang D.M., Nguyen H.P, Lien H.T., Tran H.T.T., Nguyen X.H., Nguyen T.L. 2021. Human adipose-derived mesenchymal stromal cells exhibit high HLA-DR levels and altered cellular characteristics under a xeno-free and serum-free condition. Stem Cell Rev. Rep. V. 17. P. 2291. https://doi.org/10.1007/s12015-021-10242-7
  14. De Schauwer C., Meyer E., Van de Walle G.R., Van Soom A. 2011. Markers of stemness in equine mesenchymal stem cells: a plea for uniformity. Theriogenol. V. 75. P. 1431. https://doi.org/10.1016/j.theriogenology.2010.11.008
  15. Devireddy L.R., Myers M., Screven R., Liu Z., Boxer L. 2019. A serum-free medium formulation efficiently supports isolation and propagation of canine adipose-derived mesenchymal stem/stromal cells. PLoS One. V. 14: e0210250. https://doi.org/10.1371/journal.pone.0210250
  16. Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F., Krause D., Deans R, Keating A, Prockop Dj, Horwitz E. 2006. Minimal criteria for defining multipotent mesenchymal stromal cells. International Society for Cellular Therapy position statement. Cytotherapy. V. 8. P. 315. https://doi.org/10.1080/14653240600855905
  17. Gottipamula S., Muttigi M.S., Kolkundkar U., Seetharam R.N. 2013. Serum-free media for the production of human mesenchymal stromal cells: a review. Cell Prolif. V.46. P.608. https://doi.org/10.1111/cpr.12063
  18. Govoni K.E. 2015. Horse species symposium: use of mesenchymal stem cells in fracture repair in horses. J. Anim. Sci. V. 93. P. 871. https://doi.org/10.2527/jas.2014-8516
  19. Hagen A., Niebert S., Brandt V.P., Holland H., Melzer M., Wehrend A., Burk J. 2022. Functional properties of equine adipose-derived mesenchymal stromal cells cultured with equine platelet lysate. Front. Vet. Sci. V. 9: 890302. https://doi.org/10.3389/fvets.2022.890302
  20. Han Y., Yang J., Fang J., Zhou Y., Candi E., Wang J., Hua D., Shao C., Shi Y. 2022. The secretion profile of mesenchymal stem cells and potential applications in treating human diseases. Signal Transduct. Target Ther. V. 7. P. 92. https://doi.org/10.1038/s41392-022-00932-0
  21. Huang Y.C., Lai L.C. 2019. The potential roles of stem cell-derived extracellular vesicles as a therapeutic tool. Ann. Transl. Med. V. 7. P. 693. https://doi.org/10.21037/atm.2019.11.66
  22. Ibrahim S., Saunders K., Kydd J.H., Lunn D.P., Steinbach F. 2007. Screening of anti-human leukocyte monoclonal antibodies for reactivity with equine leukocytes. Vet. Immunol. Immunopathol. V. 119. P. 63. https://doi.org/10.1016/j.vetimm.2007.06.034
  23. Jammes M., Contentin R., Cassé F., Galéra P. 2023. Equine osteoarthritis: strategies to enhance mesenchymal stromal cell-based acellular therapies. Front. Vet. Sci. V. 10:1115774. https://doi.org/10.389/fvets.2023.1115774
  24. Jones B.J., McTaggart S.J. 2008. Immunosuppression by mesenchymal stromal cells: from culture to clinic. Exp. Hematol. V. 36. P. 733. https://doi.org/10.1016/j.exphem.2008.03.006
  25. Jung S., Panchalingam K.M., Rosenberg L., Behie L.A. 2012. Ex vivo expansion of human mesenchymal stem cells in defined serum-free media. Stem Cells Int. 123030. https://doi.org/10.1155/2012/123030
  26. Karnieli O., Friedner O.M., Allickson J.G., Zhang N., Jung S., Fiorentini D., Abraham E., Eaker S.S., Yong T.K., Chan A., Griffiths S., Wehn A.K., Oh S., Karnieli O. 2017. A consensus introduction to serum replacements and serum-free media for cellular therapies. Cytotherapy V.19. P. 155. https://doi.org/10.1016/j.jcyt.2016.11.011
  27. Kinzebach S., Bieback K. 2013. Expansion of mesenchymal stem/stromal cells under xenogenic-free culture conditions. Adv. Biochem. Eng. Biotechnol. V. 129. P. 33. https://doi.org/10.1007/10_2012_134
  28. Lee J.Y., Kang M.H., Jang J.E., Lee J.E., Yang Y., Choi J.Y., Kang H.S., Lee U., Choung J.W., Jung H., Yoon Y.C., Jung K.H., Hong S.S, Yi E.C., Park S.G. 2022. Comparative analysis of mesenchymal stem cells cultivated in serum free media. Sci. Rep. V.12. P. 8620. https://doi.org/10.1038/s41598-022-12467-z
  29. Menard C., Dulong J., Roulois D., Hebraud B., Verdiere L., Pangault C., Sibut V., Bezier I., Bescher N., Monvoisin C., Gadelorge M., Bertheuil N., Flécher E., Casteilla L., Collas P. et al. 2020. Integrated transcriptomic, phenotypic, and functional study reveals tissue-specific immune properties of mesenchymal stromal cells. Stem Cells. V. 38. P. 146. https://doi.org/10.1002/stem.3077
  30. Moll G., Ankrum J.A., Kamhieh-Milz J., Bieback K., Ringden O., Volk H.D., Geissler S., Reinke P. 2019. Intravascular mesenchymal stromal/stem cell therapy product diversification: time for new clinical guidelines. Trends Mol. Med. V. 25. P. 149. https://doi.org/10.1016/j.molmed.2018.12.006
  31. Naskou M.C., Sumner S.M., Chocallo A., Kemelmakher H., Thoresen M., Copland I., Galipeau J., Peroni J.F. 2018. Platelet lysate as a novel serum-free media supplement for the culture of equine bone marrow-derived mesenchymal stem cells. Stem Cell Res. Ther. V. 9. P. 75. https://doi.org/10.1186/s13287-018-0823-3
  32. Oikonomopoulos A., van Deen W.K., Manansala A.R., Lacey P.N., Tomakili T.A., Ziman A., Hommes D.W. 2015. Optimization of human mesenchymal stem cell manufacturing: The effects of animal/xeno-free media. Sci Rep V. 5. P. 16570. doi: 10.1038/srep16570
  33. Petrova V., Vachkova E. 2023. Outlook of adipose-derived stem cells: challenges to their clinical application in horses. Vet. Sci. V.10. P. 348. https://doi.org/10.3390/vetsci10050348.
  34. Pilgrim C.R., McCahill K.A., Rops J.G., Dufour J.M., Russell K.A., Koch T.G. 2022. A review of fetal bovine serum in the culture of mesenchymal stromal cells and potential alternatives for veterinary medicine. Front. Vet. Sci. V. 9: 859025. https://doi.org/10.3389/fvets.2022.859025.
  35. Platonova S.A., Viktorova E.V., Korovina D.G., Savchenkova I.P. 2021. Equine tendinopathy therapy using mesenchymal stem cells. In: KnE Life Scie/DonAgro: Int. Res. Conference on Challenges and Advances in Farming, Food Manufacturing, Agricultural Research and Education. Dubai. UAE. P. 533. https://doi.org/10.1088/1755-1315/677/4/042069
  36. Schubert S., Brehm W., Hillmann A., Burk J. 2018. Serum-free human MSC medium supports consistency in human but not in equine adipose-derived multipotent mesenchymal stromal cell culture. Cytometry A. V. 93. P. 60. https://doi.org/10.1002/cyto.a.23240
  37. Vidal M.A., Walker N.J., Napoli E., Borjesson D.L. 2012. Evaluation of senescence in mesenchymal stem cells isolated from equine bone marrow, adipose tissue, and umbilical cord tissue. Stem Cells Dev. V. 21. P. 273. https://doi.org/10.1089/scd.2010.0589
  38. Viktorova E.V., Savchenkova I.P. 2020. Multipotent mesenchymal stem cells in clinical veterinary practice. IOP Conference Series: Earth and Environmental Science. III Int. Sci. Conference: AGRITECH-III-2020: Agribusiness, Environ. Eng. Biotechnol. Krasnoyarsk Sci. Technol. City Hall of the Russian Union of Sci. and Eng. Associations. P. 72072. https://doi.org/10.1088/1755-1315/315/4/042038
  39. Viswanathan S., Ciccocioppo R., Galipeau J., Krampera M., Le Blanc K., Martin I., Moniz K., Nolta J., Phinney D.G., Shi Y., Szczepiorkowski Z.M., Tarte K., Weiss D.J., Ashford P. 2021. Consensus International Council for Commonality in Blood Banking Automation-International Society for Cell and Gene Therapy statement on standard nomenclature abbreviations for the tissue of origin of mesenchymal stromal cells. Cytotherapy. V. 12. P. 1060. https://doi.org/10.1016/j.jcyt.2021.04.009
  40. Wang L.-T., Ting C.-H., Yen M.L., Liu K.-J., Sytwu H.-K., Wu K.K., Yen B.L. 2016. Human mesenchymal stem cells (MSCs) for treatment towards immune- and inflammation-mediated diseases: review of current clinical trials. J. Biomed. Sci. V. 23. P. 76. https://doi.org/10.1186/s12929-016-0289-5
  41. Watanabe Y., Tsuchiya A., Terai S. 2021. The development of mesenchymal stem cell therapy in the present, and the perspective of cell-free therapy in the future. Clin. Mol. Hepatol. V. 27. P. 70. https://doi.org/10.3350/cmh.2020.0194
  42. Zuk P.A., Zhu M., Ashjian P., De Ugarte D.A., Huang J.I., Mizuno H., Alfonso Z.C., Fraser J.K., Benhaim P., Hedrick M.H. 2002. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell. V. 3. P. 4279. https://doi.org/10.1091/mbc.e02-02-0105

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Морфология МСК(ЖТ) лошади, культивируемых в обычной среде (a, в, д) и БС MesenСult (б, г, е) на 4-е сут после посева (а, б) и на пассажах 4 (в, г) и 10 (д, е). Увел: об. 10×, ок. 10×.

3. Рис. 2. Гистограммы проточной цитометрии с использованием специфических антител, демонстрирующие количество клеток, несущих антигены CD31, CD34, CD90. Серым цветом выделены гистограммы, соответствующие контрольному окрашиванию клеток IgG, меченными FITC; белым – гистограммы, соответствующие окрашиванию специфическими АТ, меченными FITC.

Скачать (224KB)
4. Рис. 3. Способность МСК(ЖТ) лошади формировать клетки жировой (а, б), костной (в, г) и хрящевой (д, е) тканей при индукции к дифференцировке после культивирования в течение 10 пассажей в стандартной среде и БС. Увел.: об. 20×, ок. 10×.

Скачать (944KB)

© Российская академия наук, 2024