Temperature dependence of elastic moduli and period of magnetic spirals in cubic helimagnets with spins in non-equivalent positions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Critical phenomena in cubic helimagnets with nonequivalent magnetic atoms are investigated within the framework of the Weiss mean-field theory. The reason for the appearance of temperature dependences of elastic moduli and the pitch of the magnetic helicoid is found and the form of these dependences, determining the change in the conditions for the appearance of magnetic skyrmions in type II multiferroic Cu2OSeO3, is predicted.

Full Text

Restricted Access

About the authors

V. A. Chizhikov

National Research Center “Kurchatov Institute”; MIREA — Russian Technological University

Author for correspondence.
Email: chizhikov@crys.ras.ru

Отделение “Институт кристаллографии им. А.В. Шубникова” Курчатовского комплекса кристаллографии и фотоники

Russian Federation, Moscow; Moscow

V. E. Dmitrienko

MIREA — Russian Technological University

Email: chizhikov@crys.ras.ru
Russian Federation, Moscow

References

  1. Bogdanov A., Hubert A. // Phys. Status Solidi. B. 1994. V. 186. P. 527. https://doi.org/10.1002/pssb.2221860223
  2. Bogdanov A., Hubert A. // J. Magn. Magn. Mater. 1994. V. 138. P. 255. https://doi.org/10.1016/0304-8853(94)90046-9
  3. Rößler K., Bogdanov A.V., Pfleiderer C. // Nature. 2006. V. 442. P. 797. https://doi.org/10.1038/nature05056
  4. Grigoriev V., Maleyev S.V., Okorokov A.I. et al. // Phys. Rev. B. 2006. V. 74. P. 214414. https://doi.org/10.1103/PhysRevB.74.214414
  5. Münzer W., Neubauer A., Adams T. et al. // Phys. Rev. B. 2010. V. 81. P. 041203. https://doi.org/10.1103/PhysRevB.81.041203
  6. Adams T., Mühlbauer S., Pfleiderer C. et al. // Phys. Rev. Lett. 2011. V. 107. P. 217206. https://doi.org/10.1103/PhysRevLett.107.217206
  7. Стишов С.М., Петрова А.Е. // Успехи физ. наук. 2011. Т. 181. С. 1157. https://doi.org/10.3367/UFNr.0181.201111b.1157
  8. Seki S., Yu X.Z., Ishiwata S., Tokura Y. // Science. 2012. V. 336. P. 198. https://doi.org/10.1126/science.1214143
  9. Adams T., Chacon A., Wagner M. et al. // Phys. Rev. Lett. 2012. V. 108. P. 237204. https://doi.org/10.1103/PhysRevLett.108.237204
  10. Seki S., Kim J.-H., Inosov D.S. et al. // Phys. Rev. B. 2012. V. 85. P. 220406(R). https://doi.org/10.1103/PhysRevB.85.220406
  11. Onose Y., Okamura Y., Seki S. et al. // Phys. Rev. Lett. 2012. V. 109. P. 037603. https://doi.org/10.1103/PhysRevLett.109.037603
  12. Беляков В.А., Дмитриенко В.Е. // Успехи физ. наук. 1985. Т. 146. С. 369. https://doi.org/10.3367/UFNr.0146.198507a.0369
  13. Wright D.C., Mermin N.D. // Rev. Mod. Phys. 1989. V. 61. P. 385. https://doi.org/10.1103/RevModPhys.61.385
  14. Tewari S., Belitz D., Kirkpatrick T.R. // Phys. Rev. Lett. 2006. V. 96. P. 047207. https://doi.org/10.1103/PhysRevLett.96.047207
  15. Binz B., Vishwanath A., Aji V. // Phys. Rev. Lett. 2006. V. 96. P. 207202. https://doi.org/10.1103/PhysRevLett.96.207202
  16. Hamann A., Lamago D., Wolf T. et al. // Phys. Rev. Lett. 2011. V. 107. P. 037207. https://doi.org/10.1103/PhysRevLett.107.037207
  17. Дзялошинский И.Е. // ЖЭТФ. 1957. Т. 32. С. 1547.
  18. Dzyaloshinsky I. // J. Phys. Chem. Solids. 1958. V. 4. P. 241. https://doi.org/10.1016/0022-3697(58)90076-3
  19. Moriya T. // Phys. Rev. Lett. 1960. V. 4. P. 228. https://doi.org/10.1103/PhysRevLett.4.228
  20. Moriya T. // Phys. Rev. 1960. V. 120. P. 91. https://doi.org/10.1103/PhysRev.120.91
  21. Bak P., Jensen M.H. // J. Phys. C. 1980. V. 13. P. L881. https://doi.org/10.1088/0022-3719/13/31/002
  22. Nakanishi O., Yanase A., Hasegawa A., Kataoka M. // Solid State Commun. 1980. V. 35. P. 995. https://doi.org/10.1016/0038-1098(80)91004-2
  23. Chizhikov V.A., Dmitrienko V.E. // J. Magn. Magn. Mater. 2015. V. 382. P. 142. https://doi.org/10.1016/j.jmmm.2015.01.032
  24. Чижиков В.А. // ЖЭТФ. 2021. Т. 159. С. 656. https://doi.org/10.31857/S0044451021040076
  25. Chizhikov V.A., Dmitrienko V.E. // J. Phys.: Condens. Matter. 2024. V. 36. P. 165603. https://doi.org/10.1088/1361-648X/ad1bf8
  26. Keffer F. // Phys. Rev. 1962. V. 126. P. 896. https://doi.org/10.1103/PhysRev.126.896
  27. Yang J.H., Li Z.L., Lu X.Z. et al. // Phys. Rev. Lett. 2012. V. 109. P. 107203. https://doi.org/10.1103/PhysRevLett.109.107203
  28. Janson O., Rousochatzakis I., Tsirlin A.A. et al. // Nat. Commun. 2014. V. 5. P. 5376. https://doi.org/10.1038/ncomms6376
  29. Chizhikov V.A., Dmitrienko V.E. // J. Phys.: Condens. Matter. 2017. V. 29. P. 155601. https://doi.org/10.1088/1361-648X/aa61e7

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Magnetic sublattice of the Cu2OSeO3 crystal. Sixteen copper atoms occupy Wyckoff positions 4a (Cu-I) and 12b (Cu-II) of space group P213. The spins of the atoms in nonequivalent positions (arrows) have opposite directions, making the crystal ferrimagnetic.

Download (118KB)
3. Fig. 2. Temperature dependence of the average spins of copper atoms in two nonequivalent positions in the Cu2OSeO3 crystal, calculated in the mean field model: 1 – average spin σ1 of Cu-I atoms, 2 – average spin σ2 of Cu-II atoms, 3 – ratio σ2/σ1.

Download (52KB)
4. Fig. 3. Temperature dependences of the elastic moduli of the magnetic structure of the Cu2OSeO3 helimagnet: orientational rigidity 𝒥 (1) and the Dzyaloshinskii–Moriya parameter 𝒟 (2), calculated within the mean field model. For ease of comparison at different temperatures, the dependences are normalized to the mean square of the spin: , , where <σ2> = (4σ12 + 12σ22)/16.

Download (62KB)
5. Fig. 4. Temperature dependences of the wave number k (1) and the step p = 2π/k (2) of magnetic helicoids in the Cu2OSeO3 crystal, calculated within the mean field model. The helicoid step is given in the parameters a of the crystal lattice, the wave number is given in the inverse parameters.

Download (62KB)

Copyright (c) 2025 Russian Academy of Sciences