Memory effects in magnetoplasticity of NaCl crystals

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Memory effects in magnetoplasticity of NaCl crystals with different impurity content are studied. Dislocation paths and microhardness of crystals after their exposure to a constant magnetic field or to crossed ultralow magnetic fields are measured. In two crystals, noticeable relaxation displacements of dislocations, introduced after exposure, are found. In two other crystals with a lower impurity concentration, the paths remain at the background level, but in one of them, exposure causes an increase in the density of mobile dislocations. Similar magnetic exposure also leads to a decrease in the microhardness of crystals, but to different extent. Interpretation of observations is reduced to a spin-dependent transformation of impurity centers in a magnetic field, which plasticizes the crystal. Introduction of dislocations after magnetic exposure leads to their relaxation displacements from unstable positions, and at strongly weakened pinning centers, dislocations straight away take up positions close to equilibrium.

Full Text

Restricted Access

About the authors

M. V. Koldaeva

National Research Center “Kurchatov Institute”

Author for correspondence.
Email: mkoldaeva@ns.crys.ras.ru

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics

Russian Federation, Moscow

E. A. Petrzhik

National Research Center “Kurchatov Institute”

Email: mkoldaeva@ns.crys.ras.ru

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics

Russian Federation, Moscow

V. I. Alshits

National Research Center “Kurchatov Institute”

Email: mkoldaeva@ns.crys.ras.ru

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics

Russian Federation, Moscow

V. B. Kvartalov

National Research Center “Kurchatov Institute”

Email: mkoldaeva@ns.crys.ras.ru

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics

Russian Federation, Moscow

References

  1. Альшиц В.И., Даринская Е.В., Перекалина Т.М., Урусовская А.А. // ФТТ. 1987. Т. 29. С. 467.
  2. Альшиц В.И., Даринская Е.В., Колдаева М.В., Петржик Е.А. // Кристаллография. 2003. Т. 48. С. 826.
  3. Урусовская А.А., Альшиц В.И., Смирнов А.Е., Беккауер Н.Н. // Кристаллография. 2003. Т. 48. С. 855.
  4. Моргунов Р.Б. // Успехи физ. наук. 2004. Т. 174. С. 131. https://doi.org/10.3367/UFNr.0174.200402c.0131
  5. Головин Ю.И. // ФТТ. 2004. Т. 46. С. 769.
  6. Alshits V.I., Darinskaya E.V., Koldaeva M.V., Petrzhik E.A. // Magnetoplastic effect in nonmagnetic crystals. In: Dislocations in Solids. V. 14. Ch. 86. / Ed. Hirth J.P., Amsterdam: Elsevier, 2008. P. 333–437. https://doi.org/10.1016/S1572-4859(07)00006-X
  7. Осипьян Ю.А., Моргунов Р.Б., Баскаков А.А. и др. // Письма в ЖЭТФ. 2004. Т. 79. С. 158.
  8. Badylevich M.V., Kveder V.V., Orlov V.I., Osipyan Yu.A. // Phys. Status Solidi. C. 2005. V. 2. P. 1869. https://doi.org/10.1002/pssc.200460534
  9. Тяпунина Н.А., Красников В.Л., Белозёрова Э.П., Виноградов В.Н. // ФТТ. 2003. Т. 45. С. 95.
  10. Zhang X., Zhao Q., Wang Z. et al. // J. Phys.: Condens. Matter. 2021. V. 33. P. 435702. https://doi.org/10.1088/1361-648X/ac1823
  11. Guo Y., Lee Y.J., Zhang Y. et al. // J. Mater. Sci. Technol. 2022. V. 112. P. 96. https://doi.org/10.1016/j.jmst.2021.09.049
  12. Cai Z., Qlan C., Zhang X. et al. // Friction. 2024. V. 12. P. 2139. https://doi.org/10.1007/s40544-023-0833-0
  13. Guo Y., Zhan J., Lu W.F., Wang H. // Int. J. Mech. Sci. 2023. V. 263. P. 108768. https://doi.org/10.1016/j.ijmecsci.2023.108768
  14. Song Y., Wu W., Yu Y., Hua L. // Chin. J. Mech. Eng. 2023. V. 36. P. 139. https://doi.org/10.1186/s10033-023-00961-y
  15. Пост Р., Осинская Ю.В., Вильде Г. и др. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2020. № 5. С. 36. https://doi.org/10.31857/S102809602005012X
  16. Зельдович Я.Б., Бучаченко А.Л., Франкевич Е.Л. // Успехи физ. наук. 1988. Т. 155. С. 3. https://doi.org/10.3367/UFNr.0155.198805a.0003
  17. Steiner U.E., Ulrich T. // Chem. Rev. 1989. V. 89. P. 51. https://doi.org/10.1021/cr00091a003
  18. Бучаченко А.Л. // ЖЭТФ. 2006. Т. 129. С. 909.
  19. Бучаченко А.Л. // ЖЭТФ. 2007. Т. 132. С. 827.
  20. Бучаченко А.Л. // Успехи физ. наук. 2019. Т. 189. С. 47. https://doi.org/10.3367/UFNr.2018.03.038301
  21. Дистлер Г.И., Каневский В.М., Москвин В.В. и др. // Докл. АН СССР. 1983. Т. 268. С. 591.
  22. Головин Ю.И., Моргунов Р.Б. // Письма в ЖЭТФ. 1993. Т. 58. С. 189.
  23. Darinskaya E.V., Petrzhik E.A., Ivanov Yu.M. et al. // Phys. Status Solidi. C. 2005. V. 2. P. 1873. https://doi.org/10.1002/pssc.200460553
  24. Петржик Е.А., Даринская Е.В., Демьянец Л.Н. // ФТТ. 2008. Т. 50. С. 614.
  25. Колдаева М.В., Турская Т.Н., Закалюкин Р.М., Даринская Е.В. // Кристаллография. 2009. Т. 54. С. 1009.
  26. Даринская Е.В., Колдаева М.В., Альшиц В.И. и др. // Письма в ЖЭТФ. 2018. T. 108. С. 236. https://doi.org/10.1134/S0370274X18160038
  27. Моргунов Р.Б., Бучаченко А.Л. // ЖЭТФ. 2009. Т. 136. С. 505.
  28. Петржик Е.А., Альшиц В.И. // Письма в ЖЭТФ. 2021. T. 113. С. 678. https://doi.org/10.31857/S1234567821100074
  29. Альшиц В.И., Даринская Е.В., Колдаева М.В., Петржик Е.А. // ЖЭТФ. 2016. Т. 149. С. 136. https://doi.org/10.7868/S0044451016010120
  30. Альшиц В.И., Колдаева М.В., Петржик Е.А., Даринская Е.В. // ЖЭТФ. 2024. Т. 166. С. 696. https://doi.org/10.31857/S0044451024110129
  31. Альшиц В.И., Даринская Е.В., Колдаева М.В., Петржик Е.А. // Письма в ЖЭТФ. 2016. Т. 104. С. 362. https://doi.org/10.7868/S0370274X16170124
  32. Koldaeva M.V., Alshits V.I. // AIP Adv. 2024. V. 14. P. 015015. https://doi.org/10.1063/5.0177619
  33. Петржик Е.А., Альшиц В.И. // ЖЭТФ. 2025. T. 167. Вып. 6. С. 823. https://doi.org/10.31857/S0044451025060082
  34. Головин Ю.И., Моргунов Р.Б. // ЖЭТФ. 1999. Т. 115. С. 605.
  35. Бацанов С.С. Структурная химия (факты и зависимости). Гл. 4. М.: Диалог-МГУ, 2000. 292 с.
  36. Бучаченко А.Л. // ЖЭТФ. 2007. Т. 132. С. 673.
  37. Альшиц В.И., Даринская Е.В., Казакова О.Л. // ФТТ. 1998. Т. 40. С. 81.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Sequence of actions in the experiments in the magnetic memory mode (a) and in situ (b). The asterisks mark the moments of selective etching, the vertical arrow marks the moment of dislocation introduction. Times tM are the duration of magnetic exposure, tIn are the interval between the end of magnetic exposure and the introduction of fresh dislocations, tW is the interval between the second and third etchings.

Download (52KB)
3. Fig. 2. Dependences of the average normalized dislocation path (a, b) and the relative density of mobile dislocations ρm /ρf (c) on the exposure parameters B2tM in a constant magnetic field in the in situ (a) and magnetic memory (b, c) modes for NaClLOMO:Ni (1, 1'), NaClLOMO (2), NaClHun (3) and NaClNik (4) crystals. Fixed exposure parameters: 1 – B = 0.3 T; 1', 2 – tM = 5 min (a), tM = 20 min (b, c); 3, 4 – B = 0.5 T (a), tM = 20 min (b, c). Dotted lines indicate background levels.

Download (247KB)
4. Fig. 3. Dependences of the average normalized dislocation paths on the exposure time tM in magnetic fields BEarth ⊥ B in the in situ (a) and magnetic memory (b) modes for two crystals NaClLOMO:Ni (1) and NaClLOMO (2). BEarth = 50 μT and B ≈ 3 μT, the resonant frequencies of the pump field are 1.38 (a) and 1.52 MHz (b). In the magnetic memory mode, dislocations were introduced into the crystal immediately after magnetic exposure tIn = 0, the pause between the second and third etchings tW = 1.5 h. The dotted line marks the level of dislocation paths in the absence of magnetic action.

Download (137KB)
5. Fig. 4. Dependences of the change in microhardness on time t after exposure to a constant magnetic field (B = 1.2 T, tM = 20 min) for NaClLOMO:Ni (1), NaClLOMO (2) and NaClHun (3) crystals.

Download (92KB)
6. Fig. 5. Dependences of the average normalized dislocation paths in NaClLOMO:Ni crystals on the pause between the second and third etchings tW. Exposure parameters in magnetic fields BEarth ⊥ B (light dots): tM = 5 min, BEarth = 50 μT and B = 2.5 μT, resonant frequency of the pump field 1.52 MHz. Dark dots (dashed line) are the results of a similar experiment, but in the absence of magnetic action. The second etching was carried out immediately after the introduction of fresh dislocations (tIn = 0).

Download (48KB)
7. Fig. 6. Dependences of the average normalized dislocation paths (a, c) and the relative density of mobile dislocations ρm /ρf (b, d) on the pause between etchings tW (a, b) and on the total time tM + tW (c, d) for NaClLOMO crystals. The introduction of dislocations was carried out immediately after the end of the exposure (tIn = 0) in magnetic fields BEarth ⊥ B: tM = 1 (1), 2 (2), 3 (3), 5 (4), 10 (5) and 20 (6) min, BEarth = 50 μT and B = 2.5 μT, the resonant frequency of the pump field is 1.52 MHz.

Download (228KB)
8. Fig. 7. Dependences of the microhardness (a) of the NaClLOMO:Ni crystal on the time t elapsed after magnetic exposure, and the paths of dislocations (b) introduced into the NaClLOMO:Ni (1) and NaClLOMO (2) crystals at the time tIn. Parameters of exposure in magnetic fields BEarth ⊥ B: BEarth = 50 μT, resonant frequency of the pump field 1.52 MHz; B = 3.1 μT, tM = 30 min (a); B = 2.5 μT, tM = 20 min (b). The second and third etchings were carried out practically without a pause (tW = 0).

Download (86KB)

Copyright (c) 2025 Russian Academy of Sciences