X-ray topo-tomography of large HPHT synthetic diamonds

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Extended defects in large synthetic diamonds grown at high pressures and high temperatures (HPHT) using thermal gradient method were studied by X-ray topo-tomography with a laboratory setup. It is shown that temperature and growth rate are the principal factors influencing crystalline quality of the diamonds. Synthesis at high temperatures and low rate allows growth of single crystals with low density of dislocations, stacking faults and microtwin lamellae. Annihilation kinetics of the extended defects during annealing at high pressure implies important role of vacancies diffusion. The annihilation of such defects leads to formation of perfect dislocations.

Full Text

Restricted Access

About the authors

D. A. Zolotov

National Research Center “Kurchatov Institute”

Email: shiryaev@phyche.ac.ru

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics

Russian Federation, Moscow

A. V. Buzmakov

National Research Center “Kurchatov Institute”

Email: shiryaev@phyche.ac.ru

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics

Russian Federation, Moscow

A. F. Khokhryakov

Sobolev Institute of Geology and Mineralogy, SB RAS

Email: shiryaev@phyche.ac.ru
Russian Federation, Novosibirsk

Yu. M. Borzdov

Sobolev Institute of Geology and Mineralogy, SB RAS

Email: shiryaev@phyche.ac.ru
Russian Federation, Novosibirsk

L. D. Yagudin

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: shiryaev@phyche.ac.ru
Russian Federation, Moscow

Yu. N. Palyanov

Sobolev Institute of Geology and Mineralogy, SB RAS

Email: shiryaev@phyche.ac.ru
Russian Federation, Novosibirsk

I. G. Dyachkova

National Research Center “Kurchatov Institute”

Email: shiryaev@phyche.ac.ru

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics

Russian Federation, Moscow

V. E. Asadchikov

National Research Center “Kurchatov Institute”

Email: shiryaev@phyche.ac.ru

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics

Russian Federation, Moscow

A. A. Shiryaev

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Author for correspondence.
Email: shiryaev@phyche.ac.ru
Russian Federation, Moscow

References

  1. Palyanov Y., Kupriyanov I., Khokhryakov A., Ralchenko V. // Handbook of Crystal Growth. 2nd ed. / Eds. Nishinaga T., Rudolph P. Amsterdam: Elsevier, 2015. V. 2a. P. 671. https://doi.org/10.1016/B978-0-444-63303-3.00017-1
  2. D’Haenens-Johansson U.F.S., Butler J.E., Katrusha A.N. // Rev. Miner. Geochem. 2022. V. 88 (1). P. 689. https://doi.org/10.2138/rmg.2022.88.13
  3. Pal’yanov Yu.N., Borzdov Yu.M., Sokol A.G. et al. // Diamond Relat. Mater. 1998. V. 7. P. 916. https://doi.org/10.1016/S0925-9635(97)00325-7
  4. Palyanov Yu.N., Borzdov Yu.M., Gusev V.A. et al. // Nucl. Instrum. Methods Phys. Res. A. 2000. V. 448. P. 179. https://doi.org/10.1016/S0168-9002(99)00749-4
  5. Khokhryakov A.F., Palyanov Y.N., Kupriyanov I.N. et al. // J. Cryst. Growth. 2011. V. 317. P. 32. https://doi.org/10.1016/j.jcrysgro.2011.01.011
  6. Shevyrtalov S., Barannikov A., Palyanov Y. et al. // J. Synchr. Rad. 2021. V. 28. P. 104. https://doi.org/10.1107/S1600577520014538
  7. Lang A.R. // Diffraction and Imaging Techniques in Material Science / Eds. Amelinckx S. et al. Amsterdam: North Holland, 1978. V. 2. P. 623.
  8. Moore M., Nailer S.G., Wierzchowski W.K. // Crystals. 2016. V. 6. P. 71. https://doi.org/10.3390/cryst6070071
  9. Burns R.C., Chumakov A.J., Connell S. et al. // J. Phys. Condens. Matter. 2009. V. 21. P. 364224. https://doi.org/10.1088/0953-8984/21/36/364224
  10. Kowalski G., Moore M., Gledhill G., Maricic Z. // Diam. Relat. Mater. 1996. V. 4. P. 1254. https://doi.org/10.1016/0925-9635(96)00540-7
  11. Пальянов Ю.Н., Хохряков А.Ф., Борздов Ю.М. и др. // Геология и геофизика. 1997. Т. 38 (5). С. 882.
  12. Palyanov Y.N., Borzdov Y.M., Khokhryakov A.F. et al. // Cryst. Growth Des. 2010. V. 10. P. 3169. https://doi.org/10.1021/cg100322p
  13. Khokhryakov A.F., Palyanov Y.N. // J. Cryst. Growth. 2006. V. 293. P. 469. https://doi.org/10.1016/j.jcrysgro.2006.05.044
  14. Khokhryakov A.F., Palyanov Yu.N., Kupriyanov I.N. et al. // J. Cryst. Growth. 2014. V. 386. P. 162. https://doi.org/10.1016/j.jcrysgro.2013.09.047
  15. Анисимов Н.П., Золотов Д.А., Бузмаков А.В. и др. // Кристаллография. 2023. Т. 68 (4). С. 507. https://doi.org/10.31857/S0023476123600192
  16. Tolansky S., Miller R.F., Punglia J. // Philos. Mag. 1972. V. 26 (6). P. 1275. https://doi.org/10.1080/14786437208220341
  17. Frank F.C., Lang A.R., Evans D.J.F. et al. // J. Cryst. Growth. 1990. V. 100. P. 354. https://doi.org/10.1016/0022-0248(90)90235-D
  18. Gaukroger M.P., Martineau P.M., Crowder M.J. et al. // Diam. Relat. Mater. 2008. V. 17. P. 262. https://doi.org/10.1016/j.diamond.2007.12.036
  19. Khokhryakov A.F., Palyanov Y.N. // J. Cryst. Growth. 2007. V. 306. P. 458. https://doi.org/10.1016/j.jcrysgro.2007.05.028
  20. Tolansky S. // Proc. Roy. Soc. London. A. 1962. V. 270 (1343). P. 443. https://doi.org/10.1098/rspa.1962.0236
  21. Schindelin J., Arganda-Carreras I., Frise E. et al. // Nat. Methods. 2012. V. 9. P. 676. https://doi.org/10.1038/nmeth.2019
  22. Martineau P.M., Gaukroger M.P., Guy K.B. et al. // J. Phys.: Condens. Matter 2009. V. 21. P. 364205. https://doi.org/10.1088/0953-8984/21/36/364205
  23. Masuya S., Hanada K., Oshima T. et al. // Diam. Relat. Mater. 2017. V. 75. P. 155. https://doi.org/10.1016/j.diamond.2017.04.003
  24. Анцыгин В.Д., Гусев В.А., Калинин А.А. и др. // Автометрия. 1998. № 1. С. 10.
  25. Tatsumi N., Tamasaku K., Ito T., Sumiya H. // J. Cryst. Growth. 2017. V. 458. P. 27. https://doi.org/10.1016/j.jcrysgro.2016.10.033
  26. Sumiya H., Harano K., Tamasaku K. // Diam. Relat. Mater. 2015. V. 58. P. 221. https://doi.org/10.1016/j.diamond.2015.08.006
  27. Квасница В.Н., Харькив А.Д., Вишневский А.А. и др. // Минералогический журнал. 1980. № 3. С. 40.
  28. Kvasnytsya V. // Diam. Relat. Mater. 2013. V. 39. P. 89. https://doi.org/10.1016/j.diamond.2013.08.005
  29. Tolansky S., Sunagawa I. // Nature. 1959. V. 184. P. 1526. https://doi.org/10.1038/1841526a0

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic diagram of the experimental setup: 1 – monochromatic X-ray beam, 2 – pair of mutually perpendicular slits, 3 – goniometer, 4 – goniometric head with the crystal under study, 5 – two-dimensional detector based on a CCD matrix.

Download (42KB)
3. Fig. 2. Crystal 39/3: a – photograph of the crystal, view along <100>; b, c – cathodoluminescence image of the (100) face (plasma excitation, real colors); d–f – micrographs of etching patterns on the (100) face, differential interference contrast; g–i – X-ray topograms in different orientations of the crystal.

Download (820KB)
4. Fig. 3. Crystal NK-1: a – photograph of the crystal, view along <100>; b – mosaic image of the {001} face; c–d – micrographs of etching patterns on the {001} face; b–d – differential interference contrast; f–h – X-ray topograms in different crystal orientations.

Download (777KB)
5. Fig. 4. Crystal 720/8: a – photograph of the crystal, view along <100>; b – micrograph of etching patterns on the {001} face, polarized light; c–d – X-ray topograms in different crystal orientations.

Download (576KB)
6. Fig. 5. Crystal NK-2: a – photograph of the crystal, view along <100>; b–e – X-ray topograms in different crystal orientations.

Download (516KB)
7. Fig. 6. Crystal ND-1: a, b – optical photographs before and after annealing; c–h – optical photographs of etching patterns in the KNO3 melt on the {111} face. Section of the {111} face after etching: c, e – before annealing, d, g – after the first annealing, d, h – after the second annealing.

Download (619KB)
8. Fig. 7. Crystal ND-1: a, e – X-ray topograms in different orientations of the crystal; a, g – before annealing; b, d – after the first annealing (20 h); c, f – after the second annealing (40 h); g, h – volume reconstruction of the crystal, restored from topo-tomographic projections; three defects in the {111} planes are highlighted in colors; i–l – the result of segmentation using one of the sections as an example: i – the original image, j – the result of segmentation (mask), l – superposition of the mask on the original image.

Download (921KB)
9. Fig. 8. Crystal ND-1. X-ray topograms before and after annealing, the arrows indicate dislocations formed at the boundaries of disappeared stacking faults.

Download (175KB)
10. Table 1

Download (680KB)

Copyright (c) 2025 Russian Academy of Sciences