АНАЛИЗ СПЕКТРА ГАПЛОГРУПП мтДНК У ПАЦИЕНТОВ С НАРУШЕНИЯМИ СЛУХА, НЕСУЩИХ ВЕРОЯТНО-ПАТОГЕННЫЙ УЛЬТРАРЕДКИЙ ВАРИАНТ m.1494C>T В ГЕНЕ MT-RNR1

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Вклад в этиологию потери слуха ультраредкого варианта m.1494C>T гена MT-RNR1 мтДНК, ассоциированного с аминогликозид-индуцированной глухотой (MT-RNR1, OMIM 561000), остается неизученным в большинстве выборок индивидов с нарушениями слуха. В связи с этим цель настоящей работы – скрининг m.1494C>T гена MT-RNR1 мтДНК среди пациентов с нарушениями слуха в Республике Бурятия, с последующим анализом выявленных в мире митохондриальных линий, несущих данный ультраредкий вариант. Из открытых баз данных, литературных источников, а также по результатам полногеномного анализа мтДНК одного пациента с m.1494C>T, обнаруженного в настоящей работе, нами был проведен анализ митохондриальных линий для 27 пациентов из разных регионов мира, у которых был обнаружен данный ультраредкий вариант. У пациентов с m.1494C>T идентифицировано 19 различных гаплогрупп мтДНК, что, вероятно, свидетельствует о независимом возникновении варианта m.1494C>T. Однако в спектре выявленных гаплогрупп мы обнаружили преобладание гаплогруппы А*, частота которой в 13 раз превышала (χ2 = 45.274, p < 0.001) среднее значение частоты данной гаплогруппы в изученных ранее популяциях мира (1.45%, 519/35748). Избыточность гаплогруппы А* у индивидов с m.1494C>T может являться следствием их общего происхождения. Вероятность влияния эффекта основателя на распространенность MT-RNR1 повышает релевантность целенаправленного поиска m.1494C>T в ранее неисследованных когортах пациентов с нарушениями слуха, в первую очередь в регионах, где встречается гаплогруппа А* и ее дочерняя линия А2, – в Азии и в Америке.

Об авторах

Т. В. Борисова

Институт естественных наук Северо-Восточного федерального университета им. М.К. Аммосова; Якутский научный центр комплексных медицинских проблем;

Автор, ответственный за переписку.
Email: barashkov2004@mail.ru
Якутск, 677013 Россия; Якутск, 677000 Россия; Якутск, 677013 Россия; Якутск, 677013 Россия

А. М. Чердонова

Институт естественных наук Северо-Восточного федерального университета им. М.К. Аммосова; Якутский научный центр комплексных медицинских проблем

Email: barashkov2004@mail.ru
Якутск, 677013 Россия; Якутск, 677000 Россия; Якутск, 677013 Россия; Якутск, 677013 Россия

В. Г. Пшенникова

Якутский научный центр комплексных медицинских проблем

Email: barashkov2004@mail.ru
Якутск, 677000 Россия

Ф. М. Терютин

Якутский научный центр комплексных медицинских проблем

Email: barashkov2004@mail.ru
Якутск, 677000 Россия

И. В. Морозов

Новосибирский государственный университет; Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук

Email: barashkov2004@mail.ru
Новосибирск, 630090 Россия; Новосибирск, 630090 Россия

А. А. Бондарь

Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук

Email: barashkov2004@mail.ru
Новосибирск, 630090 Россия

О. А. Батурина

Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук

Email: barashkov2004@mail.ru
Новосибирск, 630090 Россия

М. Р. Кабилов

Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук

Email: barashkov2004@mail.ru
Новосибирск, 630090 Россия

Г. П. Романов

Институт естественных наук Северо-Восточного федерального университета им. М.К. Аммосова

Email: barashkov2004@mail.ru
Якутск, 677013 Россия

А. В. Соловьев

Институт естественных наук Северо-Восточного федерального университета им. М.К. Аммосова

Email: barashkov2004@mail.ru
Якутск, 677013 Россия

С. А. Федорова

Институт естественных наук Северо-Восточного федерального университета им. М.К. Аммосова; Якутский научный центр комплексных медицинских проблем

Email: barashkov2004@mail.ru
Якутск, 677013 Россия; Якутск, 677000 Россия

Н. А. Барашков

Институт естественных наук Северо-Восточного федерального университета им. М.К. Аммосова; Якутский научный центр комплексных медицинских проблем

Email: barashkov2004@mail.ru
Якутск, 677013 Россия; Якутск, 677000 Россия

Список литературы

  1. Morton C.C., Nance W.E. Newborn hearing scree- ning – a silent revolution // N. Engl. J. Med. 2006. V. 354. № 20. P. 2151–2164. https://doi.org/10.1056/NEJMra050700
  2. Del Castillo F.J., Del Castillo I. DFNB1 non-syndromic hearing impairment: Diversity of mutations and associated phenotypes // Front. Mol. Neurosci. 2017. V. 10. P. 428. https://doi.org/10.3389/fnmol.2017.00428
  3. Del Castillo I., Morín M., Domínguez-Ruiz M., Moreno-Pelayo M.A. Genetic etiology of non-syndromic hearing loss in Europe // Hum. Genet. 2022. V. 141. P. 683–696. https://doi.org/10.1007/s00439-021-02425-6
  4. Jin L., Yang A., Zhu Y. et al. Mitochondrial tRNA(Ser(UCN)) gene is the hot spot for mutations associated with aminoglycoside-induced and non-syndromic hearing loss // Biochem. Biophys. Res. Commun. 2007. V. 361. № 1. P. 133–139. https://doi.org/10.1016/j.bbrc.2007.06.171
  5. Richard E.M., Santos-Cortez R.L.P., Faridi R. et al. Global genetic insight contributed by consanguineous Pakistani families segregating hearing loss // Hum. Mutat. 2019. V. 40. № 1. P. 53–72. https://doi.org/10.1002/humu.23666
  6. Sloan-Heggen C.M., Bierer A.O., Shearer A.E. et al. Comprehensive genetic testing in the clinical evaluation of 1119 patients with hearing loss // Hum. Genet. 2016. V. 135. № 4. P. 441. https://doi.org/10.1007/s00439-016-1648-8
  7. Zazo Seco C., Wesdorp M., Feenstra I. et al. The diagnostic yield of whole-exome sequencing targeting a gene panel for hearing impairment in the Netherlands // Eur. J. Hum. Genet. 2017. V. 25. № 3. P. 308. https://doi.org/10.1038/ejhg.2016.182
  8. Baux D., Vaché C., Blanchet C. et al. Combined genetic approaches yield a 48% diagnostic rate in a large cohort of French hearing-impaired patients // Sci. Rep. 2017. V. 7. № 1. P. 16783. https://doi.org/10.1038/s41598-017-16846-9
  9. Boudewyns A., van den Ende J., Sommen M. et al. Role of targeted next generation sequencing in the etiological work-up of congenitally deaf children // Otol. Neurotol. 2018. V. 39. № 6. P. 732. https://doi.org/10.1097/MAO.0000000000001847
  10. Wu C.C., Tsai C.Y., Lin Y.H. et al. Genetic epidemiology and clinical features of hereditary hearing impairment in the Taiwanese population // Genes. 2019. V. 10. № 10. P. 772. https://doi.org/10.3390/genes10100772
  11. García-García G., Berzal-Serrano A., García-Díaz P. et al. Improving the management of patients with hearing loss by the implementation of an NGS panel in clinical practice // Genes (Basel). 2020. V. 11. № 12. P. 1467. https://doi.org/10.3390/genes11121467
  12. Doll J., Vona B., Schnapp L. et al. Genetic spectrum of syndromic and non-syndromic hearing loss in Pakistani families // Genes (Basel). 2020. V. 11. № 11. P. 1329. https://doi.org/10.3390/genes11111329
  13. Usami S.I., Nishio S.Y. The genetic etiology of hearing loss in Japan revealed by the social health insurance-based genetic testing of 10K patients // Hum. Genet. 2022. V. 141. № 3–4. P. 665. https://doi.org/10.1007/s00439-021-02371-3
  14. Downie L., Halliday J., Burt R. et al. Exome sequen-cing in infants with congenital hearing impairment: A population-based cohort study // Eur. J. Hum. Genet. 2020. V. 28. № 5. P. 587. https://doi.org/10.1038/s41431-019-0553-8
  15. Tropitzsch A., Schade-Mann T., Gamerdinger P. et al. Diagnostic yield of targeted hearing loss gene panel sequencing in a large German cohort with a balanced age distribution from a single diagnostic center: An eight-year study // Ear Hear. 2022. V. 43. № 3. P. 1049. https://doi.org/10.1097/AUD.0000000000001159
  16. Seligman K.L., Shearer A.E., Frees K. et al. Genetic causes of hearing loss in a large cohort of cochlear implant recipients // Otolaryngol. Head Neck Surg. 2022. V. 166. № 4. P. 734. https://doi.org/10.1177/01945998211021308
  17. Pan J., Ma S., Teng Y. et al. Wu. Whole-exome sequencing identifies genetic variants of hearing loss in 113 Chinese families // Clin. Chim. Acta. 2022. V. 532. P. 53–60. https://doi.org/10.1016/j.cca.2022.05.020
  18. Luo H., Yang Y., Wang X. et al. Concurrent newborn hearing and genetic screening of common hearing loss variants with bloodspot-based targeted next generation sequencing in Jiangxi province // Front. Pediatr. 2022. V. 10. https://doi.org/10.3389/fped.2022.1020519.
  19. Zeng B., Xu H., Yu Y. et al. Increased diagnostic yield in a cohort of hearing loss families using a comprehensive stepwise strategy of molecular tes- ting // Front. Genet. 2022. V. 13. https://doi.org/10.3389/fgene.2022.1057293
  20. Elsayed O., Al-Shamsi A. Mutation spectrum of non-syndromic hearing loss in the UAE, a retrospective cohort study and literature review // Mol. Genet. Genomic Med. 2022. V. 10. № 11. P. e2052. https://doi.org/10.1002/mgg3.2052
  21. Pál M., Nagy D., Neller A. et al. Genetic etiology of nonsyndromic hearing loss in Hungarian patients // Int. J. Mol. Sci. 2023. V. 24. № 8. P. 7401. https://doi.org/10.3390/ijms24087401
  22. Ma J., Ma X., Lin K. et al. Genetic screening of a Chinese cohort of children with hearing loss using a next-generation sequencing panel // Hum. Genomics. 2023. V. 17. № 1. P. 1. https://doi.org/10.1186/s40246-022-00449-1
  23. Fallerini C., Picchiotti N., Baldassarri M. et al. Common, low-frequency, rare, and ultra-rare coding variants contribute to COVID-19 severity // Hum. Genet. 2022. V. 141. № 1. P. 147–173. https://doi.org/10.1007/s00439-021-02397-7
  24. Kong Q.P., Yao Y.G., Sun C. et al. Phylogeny of East Asian mitochondrial DNA lineages inferred from complete sequences // Am. J. Hum. Genet. 2003. V. 73. № 3. P. 671–676. https://doi.org/10.1086/377718.
  25. Zhao H., Li R., Wang Q. et al. Maternally inherited aminoglycoside-induced and nonsyndromic deafness is associated with the novel C1494T mutation in the mitochondrial 12S rRNA gene in a large Chinese fa- mily // Am. J. Hum. Genet. 2004. V. 74. № 1. P. 139–152. https://doi.org/10.1086/381133
  26. Hutchin T., Haworth I., Higashi K. et al. A molecular basis for human hypersensitivity to aminoglycoside antibiotics // Nucl. Acids Res. 1993. V. 21. № 18. P. 4174–4179. https://doi.org/10.1093/nar/21.18.4174
  27. Guan M.X., Fischel-Ghodsian N., Attardi G. Bio-chemical evidence for nuclear gene involvement in phenotype of non-syndromic deafness associated with mitochondrial 12S rRNA mutation // Hum. Mol. Genet. 1996. V. 5. № 7. P. 963–971. https://doi.org/10.1093/hmg/5.7.963
  28. Hamasaki K., Rando R.R. Specific binding of aminoglycosides to a human rRNA construct based on a DNA polymorphism which causes aminoglycoside-induced deafness // Biochemistry. 1997. V. 36. № 40. P. 12323–12328. https://doi.org/10.1021/bi970962r
  29. Estivill X., Govea N., Barceló E. et al. Familial progressive sensorineural deafness is mainly due to the mtDNA A1555G mutation and is enhanced by treatment of aminoglycosides // Am J. Hum. Genet. 1998. V. 62. № 1. P. 27–35. https://doi.org/10.1086/301676
  30. Hobbie S.N., Bruell C.M., Akshay S. et al. Mito-chondrial deafness alleles confer misreading of the genetic code // Proc. Natl Acad. Sci. USA. 2008. V. 105. № 9. P. 3244–3249. https://doi.org/10.1073/pnas.0707265105
  31. Greber B.J., Bieri P., Leibundgut M. et al. Ribosome. The complete structure of the 55S mammalian mitochondrial ribosome // Science. 2015. V. 348. № 6232. P. 303–308. https://doi.org/10.1126/science.aaa3872
  32. Rovcanin B., Jancic J., Samardzic J. et al. In silico model of mtDNA mutations effect on secondary and 3D structure of mitochondrial rRNA and tRNA in Leber’s hereditary optic neuropathy // Exp. Eye Res. 2020. V. 201. https://doi.org/10.1016/j.exer.2020.108277
  33. Rodríguez-Ballesteros M., Olarte M., Aguirre L.A. et al. Molecular and clinical characterization of three Spanish families with maternally inherited non-syndromic hearing loss caused by the 1494C>T mutation in the mitochondrial 12S rRNA gene // J. Med. Genet. 2006. V. 43. № 11. P. e54. https://doi.org/10.1136/jmg.2006.042440
  34. Johnson R.F., Cohen A.P., Guo Y. et al. Genetic mutations and aminoglycoside-induced ototoxicity in neonates // Otolaryngol. Head Neck Surg. 2010. V. 142. № 5. P. 704–707. https://doi.org/10.1016/j.otohns.2010.01.030
  35. Zhu Y., Li Q., Chen Z. et al. Mitochondrial haplotype and phenotype of 13 Chinese families may suggest multi-original evolution of mitochondrial C1494T muta- tion // Mitochondrion. 2009. V. 9. № 6. P. 418–428. https://doi.org/10.1016/j.mito.2009.07.006
  36. Barbarino J.M., McGregor T.L., Altman R.B., Klein T.E. PharmGKB summary: very important pharmacogene information for MT-RNR1 // Pharmacogenet. Genomics. 2016. V. 26. № 12. P. 558–567. https://doi.org/10.1097/FPC.0000000000000247
  37. Kalapala S.K., Hobbie S.N., Böttger E.C., Shcherba-kov D. Mutation K42R in ribosomal protein S12 does not affect susceptibility of Mycobacterium smegmatis 16S rRNA A-site mutants to 2-deoxystreptamines // PLoS One. 2010. V. 5. № 8. P. e11960. https://doi.org/10.1371/journal.pone.0011960
  38. Wang Q., Li Q.Z., Han D. et al. Clinical and molecular analysis of a four-generation Chinese family with aminoglycoside-induced and nonsyndromic hearing loss associated with the mitochondrial 12S rRNA C1494T mutation // Biochem. Biophys. Res. Commun. 2006. V. 340. № 2. P. 583–588. https://doi.org/10.1016/j.bbrc.2005.12.045
  39. Han D., Dai P., Zhu Q. et al. The mitochondrial tRNA(Ala) T5628C variant may have a modifying role in the phenotypic manifestation of the 12S rRNA C1494T mutation in a large Chinese family with hearing loss // Biochem. Biophys. Res. Commun. 2007. V. 357. № 2. P. 554–560. https://doi.org/10.1016/j.bbrc.2007.03.199
  40. Yuan H., Chen J., Liu X. et al. Coexistence of mitochondrial 12S rRNA C1494T and CO1/tRNA(Ser(UCN)) G7444A mutations in two Han Chinese pedigrees with aminoglycoside-induced and non-syndromic hearing loss // Biochem. Biophys. Res. Commun. 2007. V. 362. № 1. P. 94–100. https://doi.org/10.1016/j.bbrc.2007.07.161
  41. Chen B., Sun D., Yang L. et al. Mitochondrial ND5 T12338C, tRNA(Cys) T5802C, and tRNA(Thr) G15927A variants may have a modifying role in the phenotypic manifestation of deafness-associated 12S rRNA A1555G mutation in three Han Chinese pedigrees // Am. J. Med. Genet. A. 2008. V. 146A. № 10. P. 1248–1258. https://doi.org/10.1002/ajmg.a.32285
  42. Van Oven M., Kayser M. Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation // Hum. Mutat. 2009. V. 30. № 2. P. E386–E394. https://doi.org/10.1002/humu.20921
  43. Okonechnikov K., Golosova O., Fursov M. UGENE team. unipro UGENE: A unified bioinformatics tool-kit // Bioinformatics. 2012. V. 28(8). P. 1166–1167. https://doi.org/10.1093/bioinformatics/bts091
  44. Tamura K., Stecher G., Kumar S. MEGA11: Molecular evolutionary genetics analysis version 11 // Mol. Biol. Evol. 2021. V. 38(7). P. 3022–3027. https://doi.org/10.1093/molbev/msab120
  45. Andrews R., Kubacka I., Chinnery P. et al. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA // Nat. Genet. 1999. V. 23. № 2. P. 147. https://doi.org/10.1038/13779. PMID: 10508508
  46. Pshennikova V., Teryutin F., Cherdonova A. et al. The GJB2 (Cx26) gene variants in patients with hearing impairment in the Baikal lake region (Russia) // Genes. 2023. V. 14. № 5. P. 1001. https://doi.org/10.3390/genes14051001
  47. Borisova T., Cherdonova A., Pshennikova V. et al. High prevalence of m.1555A > G in patients with hearing loss in the Baikal lake region of Russia as a result of founder effect // Sci. Rep. 2024. V. 14. № 1. P. 15342. https://doi.org/10.1038/s41598-024-66254-z
  48. Weissensteiner H., Pacher D., Kloss-Brandstät- ter A. et al. HaploGrep 2: Mitochondrial haplogroup classification in the era of high-throughput sequen-cing // Nucl. Acids Res. 2016. V. 44. № W1. P. W58–W63. https://doi.org/10.1093/nar/gkw233
  49. Derenko M., Grzybowski T., Malyarchuk B. et al. Diversity of mitochondrial DNA lineages in South Siberia // Ann. Hum. Genet. 2003. V. 67. № 5. P. 391–411. https://doi.org/10.1046/j.1469-1809.2003.00035.x
  50. Torroni A., Sukernik R.I., Schurr T.G. et al. mtDNA variation of aboriginal Siberians reveals distinct genetic affinities with Native Americans // Am. J. Hum. Genet. 1993. V. 53. № 3. P. 591–608. https://doi.org/0002-9297/93/5303-0003$02.00
  51. Starikovskaya Y.B., Sukernik R.I., Schurr T.G. et al. mtDNA diversity in Chukchi and Siberian Eskimos: Implications for the genetic history of Ancient Beringia and the peopling of the New World // Am. J. Hum. Genet. 1998. V. 63. № 5. P. 1473–1491. https://doi.org/10.1086/302087
  52. Derenko M., Malyarchuk B., Grzybowski T. et al. Phylogeographic analysis of mitochondrial DNA in northern Asian populations // Am. J. Hum. Genet. 2007. V. 81. № 5. P. 1025–1041. https://doi.org/10.1086/522933
  53. Kumar S., Bellis C., Zlojutro M. et al. Large scale mitochondrial sequencing in Mexican Americans suggests a reappraisal of Native American origins // BMC Evol. Biol. 2011. V. 11. P. 293. https://doi.org/10.1186/1471-2148-11-293
  54. Schönherr S., Weissensteiner H., Kronenberg F., Forer L. Haplogrep 3 – an interactive haplogroup classification and analysis platform // Nucl. Acids Res. 2023. V. 51. № W1. P. W263–W268. https://doi.org/10.1093/nar/gkad284
  55. Soares P., Ermini L., Thomson N. et al. Correcting for purifying selection: An improved human mitochondrial molecular clock // Am. J. Hum. Genet. 2009. V. 84 № 6. P. 740–759. https://doi.org/10.1016/j.ajhg.2009.05.001
  56. López-Bigas N., Rabionet R., Martinez E. et al. Mutations in the mitochondrial tRNA Ser(UCN) and in the GJB2 (connexin 26) gene are not modifiers of the age at onset or severity of hearing loss in Spanish patients with the 12S rRNA A1555G mutation // Am. J. Hum. Genet. 2000. V. 66. № 4. P. 1465–1467. https://doi.org/10.1086/302870
  57. Achilli A., Rengo C., Magri C. et al. The molecular dissection of mtDNA haplogroup H confirms that the Franco-Cantabrian glacial refuge was a major source for the European gene pool // Am. J. Hum. Genet. 2004. V. 75. № 5. P. 910–918. https://doi.org/10.1086/425590.
  58. Derbeneva O., Starikovskaya E., Wallace D., Suker- nik R.I. Traces of early Eurasians in the Mansi of northwest Siberia revealed by mitochondrial DNA analysis // Am. J. Hum. Genet. 2002. V. 70. № 4. P. 1009–1014. https://doi.org/10.1086/339524
  59. Derenko M., Grzybowski T., Malyarchuk B. et al. Diversity of mitochondrial DNA lineages in South Siberia // Ann. Hum. Genet. 2003. V. 67. № 5. P. 391–411. https://doi.org/10.1046/j.1469-1809.2003.00035.x
  60. Derenko M., Denisova G., Dambueva I. et al. Mitogenomics of modern Mongolic-speaking populations // Mol. Genet. Genomics. 2022. V. 297. № 1. P. 47–62. https://doi.org/10.1007/s00438-021-01830-w
  61. Sukernik R., Volodko N., Mazunin I. et al. Mitochondrial genome diversity in the Tubalar, Even, and Ulchi: Сontribution to prehistory of native Siberians and their affinities to Native Americans // Am. J. Phys. Anthropol. 2012. V. 148. № 1. P. 123–138. https://doi.org/10.1002/ajpa.22050
  62. Губина М.А., Бабенко В.Н., Бацевич В.А. и др. Полиморфизм митохондриальной ДНК и шести генов ядерного генома в популяции амурских эвенков // Генетика. 2022. Т. 58. № 1. С. 52–67. https://doi.org/10.31857/S0016675822010039
  63. Cardinali I., Bodner M., Capodiferro M.R. et al. Mitochondrial DNA footprints from western eurasia in Modern Mongolia // Front. Genet. 2022. V. 12. https://doi.org/10.3389/fgene.2021.819337
  64. Derenko M., Malyarchuk B., Bahmanimehr A. et al. Complete mitochondrial DNA diversity in Iranians // PLoS One. 2013. V. 8. № 11. https://doi.org/10.1371/journal.pone.0080673
  65. Irwin J.A., Ikramov A., Saunier J. et al. The mtDNA composition of Uzbekistan: A microcosm of Central Asian patterns // Int. J. Legal Med. 2010. V. 124(3). P. 195–204. https://doi.org/10.1007/s00414-009-0406-z
  66. Askapuli A., Vilar M., Garcia-Ortiz H. et al. Kazak mitochondrial genomes provide insights into the human population history of Central Eurasia // PLoS One. 2022. V. 17. № 11. https://doi.org/10.1371/journal.pone.0277771
  67. Liu J., Wang L.D., Sun Y.B. et al. Deciphering the signature of selective constraints on cancerous mitochondrial genome // Mol. Biol. Evol. 2012. V. 29. № 4. P. 1255–1261. https://doi.org/10.1093/molbev/msr290
  68. Lin M., Trejaut J.A. Diversity and distribution of mitochondrial DNA in non-Austronesian-speaking Taiwanese individuals // Hum. Genome Var. 2023. V. 10. № 1. P. 2. https://doi.org/10.1038/s41439-022-00228-3
  69. Zheng H.X., Yan S., Qin Z.D. et al. Major population expansion of East Asians began before neolithic time: Evidence of mtDNA genomes // PLoS One. 2011. V. 6. № 10. P .e25835. https://doi.org/10.1371/journal.pone.0025835
  70. Li Y.C., Ye W.J., Jiang C.G. et al. River Valleys shaped the maternal genetic landscape of Han Chinese // Mol. Biol. Evol. 2019. V. 36. № 8. P. 1643–1652. https://doi.org/10.1093/molbev/msz072
  71. Wang C.Z., Yu X.E., Shi M.S. et al. Whole mitochondrial genome analysis of the Daur ethnic minority from Hulunbuir in the Inner Mongolia Autonomous Region of China // BMC Ecol. Evo. 2022. V. 22. P. 66. https://doi.org/10.1186/s12862-022-02019-4
  72. Tanaka M., Cabrera V.M., González A.M. et al. Mitochondrial genome variation in eastern Asia and the peopling of Japan // Genome Res. 2004. V. 14. № 10A. P. 1832–1850. https://doi.org/10.1101/gr.2286304
  73. Yamamoto K., Sakaue S., Matsuda K. et al. Genetic and phenotypic landscape of the mitochondrial genome in the Japanese population // Commun. Biol. 2020. V. 3. № 1. P. 104. https://doi.org/10.1038/s42003-020-0812-9
  74. Duong N.T., Macholdt E., Ton N.D. et al. Complete human mtDNA genome sequences from Vietnam and the phylogeography of Mainland Southeast Asia // Sci. Rep. 2018. V. 8. № 1. P. 11651. https://doi.org/10.1038/s41598-018-29989-0
  75. Kutanan W., Shoocongdej R., Srikummool M. et al. Cultural variation impacts paternal and maternal genetic lineages of the Hmong-Mien and Sino-Tibetan groups from Thailand. // Eur. J. Hum. Genet. 2020. V. 28. № 11. P. 1563–1579. https://doi.org/10.1038/s41431-020-0693-x
  76. Kutanan W., Kampuansai J., Brunelli A. et al. New insights from Thailand into the maternal genetic history of Mainland Southeast Asia // Eur. J. Hum. Genet. 2018. V. 26. № 6. P. 898–911. https://doi.org/10.1038/s41431-018-0113-7
  77. Kutanan W., Kampuansai J., Srikummool M. et al. Complete mitochondrial genomes of Thai and Lao populations indicate an ancient origin of Austroasiatic groups and demic diffusion in the spread of Tai-Kadai languages // Hum. Genet. 2017. V. 136. № 1. P. 85–98. https://doi.org/10.1007/s00439-016-1742-y
  78. Jaisamut K., Pitiwararom R., Sukawutthiya P. et al. Unraveling the mitochondrial phylogenetic landscape of Thailand reveals complex admixture and demogra- phic dynamics // Sci. Rep. 2023. V. 13. P. 20396. https://doi.org/10.1038/s41598-023-47762-w
  79. Summerer M., Horst J., Erhart G. et al. Large-scale mitochondrial DNA analysis in Southeast Asia reveals evolutionary effects of cultural isolation in the multi-ethnic population of Myanmar // BMC Evol. Biol. 2014. V. 28. № 14. P. 17. https://doi.org/10.1186/1471-2148-14-17
  80. Bodner M., Perego U.A., Gomez J.E. et al. The mitochondrial DNA landscape of modern Mexico // Genes (Basel). 2021. V. 12. № 9. P. 1453. https://doi.org/10.3390/genes12091453
  81. Simão F., Strobl C., Vullo C. et al. The maternal inheritance of Alto Paraná revealed by full mitogenome sequences // Forensic Sci. Int. Genet. 2019. V. 39. P. 66–72. https://doi.org/10.1016/j.fsigen.2018.12.007
  82. Zhu Y., Li Q., Chen Z. et al. Mitochondrial haplotype and phenotype of 13 Chinese families may suggest multi-original evolution of mitochondrial C1494T mutation // Mitochondrion. 2009. V. 9. № 6. P. 418–428. https://doi.org/10.1016/j.mito.2009.07.006
  83. Lu J., Li Z., Zhu Y. et al. Mitochondrial 12S rRNA variants in 1642 Han Chinese pediatric subjects with aminoglycoside-induced and nonsyndromic hearing loss // Mitochondrion. 2010. V. 10. № 4. P. 380–390. https://doi.org/10.1016/j.mito.2010.01.007.
  84. Yang X.L., Bai-Cheng X., Chen X.J. et al. Common molecular etiology of patients with nonsyndromic hearing loss in Tibetan, Tu nationality, and Mongolian patients in the northwest of China // Acta Otolaryngol. 2013. V. 133. № 9. P. 930–934. https://doi.org/10.3109/00016489.2013.795288
  85. Ma Y., Xiao Y., Bai X. et al. GJB2, SLC26A4, and mitochondrial DNA 12S rRNA hot-spots in 156 subjects with non-syndromic hearing loss in Tengzhou, China // Acta Otolaryngol. 2016. V. 136. P. 800–805. https://doi.org/10.3109/00016489.2016.1164893
  86. Zhou Y., Li C., Li M. et al. Mutation analysis of common deafness genes among 1,201 patients with non-syndromic hearing loss in Shanxi Province // Mol. Genet. Genomic Med. 2019. V. 7. № 3. P. e537. https://doi.org/10.1002/mgg3.537
  87. Ming L., Wang Y., Lu W., Sun T. A mutational analysis of GJB2, SLC26A4, MT-RNA1, and GJB3 in children with nonsyndromic hearing loss in the Henan province of China // Genet. Test. Mol. Biomarkers. 2019. V. 23. № 1. P. 51–56. https://doi.org/10.1089/gtmb.2018.0146
  88. Gao Z., Yuan Y.S. Screening for mitochondrial 12S rRNA C1494T mutation in 655 patients with non-syndromic hearing loss: an observational study // Medicine (Baltimore). 2020. V. 99. № 13. P. e19373. https://doi.org/10.1097/MD.0000000000019373
  89. Ding Y., Lang J., Zhang J. et al. Screening for deafness-associated mitochondrial 12S rRNA mutations by using a multiplex allele-specific PCR method // Biosci Rep. 2020. V. 40. № 5. https://doi.org/10.1042/BSR20200778
  90. Duan S., Guo Y., Chen X., Li Y. Genetic mutations in patients with nonsyndromic hearing impairment of minority and Han Chinese ethnicities in Qinghai, China // J. Int. Med. Res. 2021. V. 49. № 4. https://doi.org/10.1177/03000605211000892
  91. Wang Y., Chen W., Liu Z. et al. Comparison of the mutation spectrum of common deafness-causing genes in 509 patients with nonsyndromic hearing loss in 4 different areas of China by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry // J. Int. Adv. Otol. 2021. V. 17. № 6. P. 492–499. https://doi.org/10.5152/iao.2021.21086
  92. Dai Q., Dai W., Wang D. et al. Molecular screening of patients with profound hearing loss from Chengdu, China // Acta Otolaryngol. 2022. V. 142. № 1. P. 57–60. https://doi.org/10.1080/00016489.2021.2014564
  93. Ma P., Zhou B., Kang Q. et al. Mutation spectrum of hearing loss patients in Northwest China: identification of 20 novel variants // Mol. Genet. Genomic Med. 2024. V. 12. № 6. P. e2434. https://doi.org/10.1002/mgg3.2434
  94. Yano T., Nishio S.Y., Usami S. Deafness Gene Study Consortium. Frequency of mitochondrial mutations in non-syndromic hearing loss as well as possibly responsible variants found by whole mitochondrial genome screening // J. Hum. Genet. 2014. V. 59. № 2. P. 100–106. https://doi.org/10.1038/jhg.2013.128
  95. Bae J.W., Lee K.Y., Choi S.Y. et al. Molecular analysis of mitochondrial gene mutations in Korean patients with nonsyndromic hearing loss // Int. J. Mol. Med. 2008. V. 22. № 2. P. 175–180. https://doi.org/10.3892/ijmm_00000005
  96. Montazer Zohour M., Tabatabaiefar M.A., Dehkordi F.A. et al. Large-scale screening of mitochondrial DNA mutations among Iranian patients with prelingual nonsyndromic hearing impairment // Genet. Test. Mol. Biomarkers. 2012. V. 16. № 4. P. 271–278. https://doi.org/10.1089/gtmb.2011.0176
  97. Moassass F., Al-Halabi B., Nweder M.S., Al-Achkar W. Investigation of the mtDNA mutations in Syrian families with non-syndromic sensorineural hearing loss // Int. J. Pediatr. Otorhinolaryngol. 2018. V. 113. P. 110–114. https://doi.org/10.1016/j.ijporl.2018.07.028
  98. Yehya A., Al-Trad B., Bani-Hmoud M., Rababa'h A.M. Pharmacogenetic screening of A1555G and C1494T mitochondrial mutations and the use of ototoxic drugs among Jordanians // Eur. Rev. Med. Pharmacol. Sci. 2021. V. 25. № 18. P. 5684–5689. https://doi.org/10.26355/eurrev_202109_26787
  99. Rodríguez-Ballesteros M., Olarte M., Aguirre L.A. et al. Molecular and clinical characterisation of three Spanish families with maternally inherited non-syndro- mic hearing loss caused by the 1494C->T mutation in the mitochondrial 12S rRNA gene // J. Med. Genet. 2006. V. 43. № 11. P. e54. https://doi.org/10.1136/jmg.2006.042440
  100. Sukarova Stefanovska E., Cakar M., Filipce I., Plaseska Karanfilska D. Genetics of non-syndromic hearing loss in the Republic of Macedonia // Balkan J. Med. Genet. 2012. V. 15(Suppl). P. 57–59. https://doi.org/10.2478/v10034-012-0020-0
  101. Mkaouar-Rebai E., Tlili A., Masmoudi S. et al. New polymorphic mtDNA restriction site in the 12S rRNA gene detected in Tunisian patients with non-syndro-mic hearing loss // Biochem. Biophys. Res. Commun. 2008. V. 369. № 3. P. 849–852. https://doi.org/10.1016/j.bbrc.2008.02.107

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025