Mutations in the thyrotropin receptor gene: correlation between genetically altered structural elements of the thyrotropin receptor and functional disorders of the thyroid gland

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

The thyroid-stimulating hormone receptor (TSHR), one of the main autoantigens of the thyroid gland (TG), along with thyroglobulin and thyroid peroxidase, plays a key role in the metabolism of thyroid hormones, controls the growth and functions of thyrocytes. Due to the heterogeneity of etiology and pathogenesis, there are many functional disorders of the thyroid gland caused by hyperthyroidism, hypothyroidism or thyroid tumors. This analytical review systematizes data from 1993 on mutations in the TSH gene, identified in the genome of patients with hyperthyroidism, hypothyroidism or thyroid tumors, on various domains of the TSH receptor, which has a unique structure for this family of receptors.

Авторлар туралы

A. Zubkov

Mechnikov Research Institute of Vaccine and Sera

Email: alex_zubkov@list.ru
Moscow, 105064 Russia

O. Svitich

Mechnikov Research Institute of Vaccine and Sera; Sechenov First Moscow State Medical University (Sechenov University)

Email: alex_zubkov@list.ru
Moscow, 105064 Russia; Moscow, 119435 Russia

V. Fadeev

Sechenov First Moscow State Medical University (Sechenov University)

Email: alex_zubkov@list.ru
Moscow, 119435 Russia

L. Butova

Mechnikov Research Institute of Vaccine and Sera

Хат алмасуға жауапты Автор.
Email: alex_zubkov@list.ru
Moscow, 105064 Russia

Әдебиет тізімі

  1. Кандрор В.И. Молекулярно-генетические аспекты тиреоидной патологии // Проблемы эндокринологии. 2001. Т. 47. № 5. С. 3–10. https://doi.org/10.14341/probl11602
  2. Bohr U.R., Behr M., Loos U. A heritable point mutation in an extracellular domain of the TSH receptor involved in the interaction with Graves' immunoglo- bulins // Biochim. Biophys. Acta. 1993. V. 1216. № 3. P. 504–508. https://doi.org/10.1016/0167-4781(93)90024-8
  3. Troshina E., Masurina N., Galkina N. Гены-кандидаты тиреоидной патологии // Клин. и эксперим. тиреоидология. 2005. Т. 1. № 1. С. 4–16. https://doi.org/10.14341/ket2005114-16
  4. Calebiro D., Perzani L., Beck-Packos P. Clinical manifestations of HTH receptor mutations: pathology of the TSH receptor // Thyroid Intern. 2005. № 3. P. 1–17.
  5. Paschke R., Ludgate M. The thyrotropin receptor in thyroid diseases // New Eng. J. Med. 1997. V. 337. P. 1675–1681. https://doi.org/10.1056/NEJM199712043372307
  6. Loosfelt H., Pichon C., Jolivet A. et al. Two-subunit structure of the human thyrotropin receptor // Proc. Natl Acad. Sci. USA. 1992. V. 89. P. 3765–3769. https://doi.org/10.1073/pnas.89.9.3765
  7. Rapoport B., McLachlan S.M. Reflections on thyroid autoimmunity: A personal overview from the past into the future // Horm. Metab. Res. 2018. V. 50. P. 840–852. https://doi.org/10.1055/a-0725-9297
  8. Kohn L.D., Shimura H., Shimura Y. et al. The thyrotropin receptor // Vitam. Horm. 1995. V. 50. P. 287–384. https://doi.org/10.1016/s0083-6729(08)60658-5
  9. Zhang M.L., Sugawa H., Kosugi S., Mori T. Constitutive activation of the thyrotropin receptor by deletion of a portion of the extracellular domain // Biochem. Biophys. Res. Commun. 1995. V. 211. № 1. P. 205–210. https://doi.org/10.1006/bbrc.1995.1797
  10. Vaidya B., Campbell V., Tripp John H. et al. Premature birth and low birth weight associated with nonautoimmune hyperthyroidism due to an activating thyrotropin receptor gene mutation // Review Clin. Endocrinol. Oxf. 2004. V. 60. № 6. Р. 711–718. https://doi.org/10.1111/j.1365-2265.2004.02040.x
  11. Iliksu G.H., Mueller S., Bircan R. et al. A new silent germline mutation of the TSH receptor: Coexpression in a hyperthyroid family member with a second activating somatic mutation // Thyroid. 2008. V. 18. № 5. Р. 499–508. https://doi.org/10.1089/thy.2007.0335
  12. Gustavsson B., Eklöf C., Westermark K. et al. Functional analysis of a variant of the thyrotropin receptor gene in a family with Graves' disease // Mol. Cell Endocrinol. 1995. V. 111. № 2. Р. 167–173. https://doi.org/10.1016/0303-7207(95)03562-l
  13. Okazaki Y., Naoko A., Nagayoshi U. et al. A case of familial nonautoimmune hyperthyroidism during preg- nancy // AACE Clin. Case Rep. 2020. V. 6. № 2. Р. 94–97. https://doi.org/10.4158/ACCR-2019-0361
  14. Chester J., Rotenstein D., Ringkananont U. et al. Congenital neonatal hyperthyroidism caused by germline mutations in the TSH receptor gene // J. Pediatr. Endocrinol. Metab. 2008. V. 21. № 5. Р. 479–486. https://doi.org/10.1515/jpem.2008.21.5.479
  15. Scaglia P.A., Chiesa A., Bastida G. et al. Severe congenital non-autoimmune hyperthyroidism associated to a mutation in the extracellular domain of thyrotropin receptor gene // Arq. Bras. Endocrinol. Metab. 2012. V. 56. № 8. Р. 513–518. https://doi.org/10.1590/s0004-27302012000800009
  16. Börgel K., Pohlenz J., Koch H.G., Bramswig J.H. Long-term carbimazole treatment of neonatal nonautoimmune hyperthyroidism due to a new activating TSH receptor gene mutation (Ala428Val) // Horm. Res. 2005. V. 64. № 4. Р. 203–208. https://doi.org/10.1159/000089348
  17. Biebermann H., Schöneberg T., Hess C. et al. The first activating TSH receptor mutation in transmembrane domain 1 identified in a family with nonautoimmune hyperthyroidism // J. Clin. Endocrinol. Metab. 2001. V. 86. № 9. Р. 4429–4433. https://doi.org/10.1210/jcem.86.9.7888
  18. Elgadi A., Arvidsson C.-G., Janson A. et al. Autosomal-dominant non-autoimmune hyperthyroidism presenting with neuromuscular symptoms // Acta Paediatr. 2005. V. 94. № 8. Р. 1145–1148. https://doi.org/10.1111/j 1651-2227 2005 tb 02060x
  19. Lavard L. , Sehested A., Jacobsen B.B. et al. Long-term follow-Up of an infant with thyrotoxicosis due to germline mutation of the TSH receptor gene (Met453Thr) // Horm. Res. 1999. V. 51. № 1. Р. 43–46. https://doi.org/10.1159/000023312
  20. Nakamura A., Morikawa S., Aoyagi H. et al. A Japanese family with nonautoimmune hyperthyroidism caused by a novel heterozygous thyrotropin receptor gene mutation // Pediatr. Res. 2014. V. 75. № 6. Р. 749–753. https://doi.org/10.1038/pr.2014.34
  21. Lee Yung-Seng , PohLarry, KokSeng, Kah-Yin Loke. An activating mutation of the thyrotropin receptor gene in hereditary nonautoimmune hyperthyroidism // J. Pediatr. Endocrinol. Metab. 2002. V. 15. № 2. Р. 211–215. https://doi.org/10.1515/jpem.2002.15.2.211
  22. Ferrara A.M., Capalbo D., Rossi G. et al. A new case of familial nonautoimmune hyperthyroidism caused by the M463V mutation in the TSH receptor with anticipation of the disease across generations: A possible role of iodine supplementation // Thyroid. 2007. V. 17. № 7. Р. 677–680. https://doi.org/10.1089/thy.2006.0333
  23. Smits G., Govaerts C., Nubourgh I. et al. Lysine 183 and glutamic acid 157 of the TSH receptor: Two interac- ting residues with a key role in determining specifi- city toward TSH and human CG // Mol. Endocrinol. 2002. V. 16. № 4. Р. 722–735. https://doi.org/10.1210/mend.16.4.0815
  24. Akcurin S., Turkkahraman D., Tysoe C. et al. A family with a novel TSH receptor activating germline mutation (p.Ala485Val) // Eur. J. Pediatr. 2008. V. 167. № 11. Р. 1231–1237. https://doi.org/10.1007/s00431-007-0659-9
  25. Arturi F., Chiefari E., Tumino S. et al. Similarities and differences in the phenotype of members of an Italian family with hereditary nonautoimmune hyperthyro- idism associated with an activating TSH receptor germline mutation // J. Endocrinol. Inves. 2002. V. 25. № 8. Р. 696–701. https://doi.org/10.1007/BF03345103
  26. Pohlenz J., Pfarr N., Krüger S., Hesse V. Subclinical hyperthyroidism due to a thyrotropin receptor (TSHR) gene mutation (S505R) // Acta Paediatr. 2006. V. 95. № 12. Р. 1685–1687. https://doi.org/10.1080/08035250600774122
  27. Claus M., Maier J., Paschke R. et al. Novel thyrotropin receptor germline mutation (Ile568Val) in a Saxonian family with hereditary nonautoimmune hyperthyroidism // Thyroid. 2005. V. 15. № 9. Р. 1089–1094. https://doi.org/10.1089/thy.2005.15.1089
  28. Watkins M.G., Dejkhamron P., Huo J. et al. Persistent neonatal thyrotoxicosis in a neonate secondary to a rare thyroid-stimulating hormone receptor activating mutation: case report and literature review // Review Endocr. Pract. 2008; V. 14. № 4. Р. 479–483. https://doi.org/10.4158/EP.14.4.479
  29. Nishihara E., Chen C.-R., Higashiyama T. et al. Subclinical nonautoimmune hyperthyroidism in a family segregates with a thyrotropin receptor mutation with weakly increased constitutive activity // Thyroid. 2010. V. 20. № 11. Р. 1307–1314. https://doi.org/10.1089/thy.2010.0261
  30. Caron P., Broussaud S., Galano-Fruto J.J. et al. New variant (Val597Ile) in transmembrane region of the TSH receptor with human chorionic gonadotropin hypersensitivity in familial gestational hyperthyroidism // Clin. Endocrinol. Oxf. 2020. V. 93. № 3. Р. 339–345. https://doi.org/10.1111/cen.14215
  31. Alberti L., Proverbio M.C., Costagliola S. et al. A novel germline mutation in the TSH receptor gene cau- ses nonautoimmune autosomal dominant hyperthyroidism // Eur. J. Endocrinol. 2001. V. 145. № 3. Р. 249–254. https://doi.org/10.1530/eje.0.1450249
  32. Duprez L., Parma J., Van Sande J. et al. Germline mutations in the thyrotropin receptor gene cause nonautoimmune autosomal dominant hyperthyro-idism // Nat. Genet. 1994. V. 7. № 3. Р. 396–401. https://doi.org/10.1038/ng0794-396
  33. Taha D., Adhikari A., Flore L.A. Familial neonatal nonautoimmune hyperthyroidism due to a gain-of-function (D619G) thyrotropin-receptor mutation // J. Pediatr. Endocrinol. Metab. 2020. V. 34. № 2. Р. 267–271. https://doi.org/10.1515/jpem-2020-0291
  34. Nwosu B.U., Gourgiotis L., Gershengorn M.C., Neu- mann S. A novel activating mutation in transmembrane helix 6 of the thyrotropin receptor as cause of hereditary nonautoimmune hyperthyroidism // Thyroid. 2006. V. 16. № 5. Р. 505–512. https://doi.org/10.1089/thy.2006.16.505
  35. Winkler F., Kleinau G., Tarnow P. A new phenotype of nongoitrous and nonautoimmune hyperthyroidism caused by a heterozygous thyrotropin receptor mutation in transmembrane helix 6 // J. Clin. Endocrinol. Metab. 2010. V. 95. № 8. Р. 3605–3610. https://doi.org/10.1210/jc.2010-0112
  36. Biebermann H., Winkler F., Handke D. et al. New pathogenic thyrotropin receptor mutations decipher differentiated activity switching at a conserved helix 6 motif of family A GPCR // J. Clin. Endocrinol. Metab. 2012. V. 97. № 2. Р. 228–232. https://doi.org/10.1210/jc.2011-2106
  37. Jaeschke H., Schaarschmidt J., Eszlinger M. et al. A newly discovered TSHR variant (L665F) associated with nonautoimmune hyperthyroidism in an Austrian family induces constitutive TSHR activation by steric repulsion between TM1 and TM7 // J. Clin. Endocrinol. Metab. 2014. V. 99. № 10. Р. 2051–2059. https://doi.org/10.1210/jc.2014-1436
  38. Schaarschmidt J., Paschke S., Özerden M. et al. Late manifestation of subclinical hyperthyroidism after goitrogenesis in an index patient with a N670S TSH receptor germline mutation masquerading as TSH receptor antibody negative Graves' disease // Horm. Metab. Res. 2012. V. 44. № 13. Р. 962–965. https://doi.org/10.1055/s-0032-1316353
  39. Oliver-Petit I., Savagner F., Grunenwald S. et al. Severe thyrotoxicosis in an infant revealing familial nonautoimmune hyperthyroidism with a novel (C672W) stimulating thyrotropin receptor germline mutation // Clin. Case Rep. 2017. V. 5. № 12. Р. 1980–1987. https://doi.org/10.1002/ccr3.1178
  40. Nishihara E., Nagayama I., Amino N. et al. A novel thyrotropin receptor germline mutation (Asp617Tyr) causing hereditary hyperthyroidism // Endocrine J. 2007. V. 54. № 6. Р. 927–934. https://doi.org/10.1507/endocrj.k07-088
  41. Shin J.H., Seo G.H., Seung Hwan Oh et al. An A627V-activating mutation in the thyroid-stimulating hormone receptor gene in familial nonautoimmune hyperthyroidism // Ann Pediatr. Endocrinol. Metab. 2020. V. 25. № 4. Р. 282–286. https://doi.org/10.6065/apem.2040076.038
  42. Ringkananont U., Van Durme J., Montanelli L. et al. Repulsive separation of the cytoplasmic ends of transmembrane helices 3 and 6 is linkedto receptor activation in a novel thyrotropin receptor mutant (M626I) // Mol. Endocrinol. 2006. V. 20. № 4. Р. 893–903. https://doi.org/10.1210/me.2005-0339
  43. Führer D., Wonerow P., Willgerodt H., Paschke R. Identification of a new thyrotropin receptor germline mutation (Leu629Phe) in a family with neonatal onset of autosomal dominant nonautoimmune hyperthyroidism // J. Clin. Endocrinol. Metab. 1997. V. 82. № 12. Р. 4234–4238. https://doi.org/10.1210/jcem.82.12.4405
  44. Khoo D.H., Parma J., Rajasoorya C. et al. A germline mutation of the thyrotropin receptor gene associated with thyrotoxicosis and mitral valve prolapse in a Chinese family // J. Clin. Endocrinol. Metab. 1999. V. 84. № 4. Р. 1459–1462. https://doi.org/10.1210/jcem.84.4.5620
  45. Петеркова В.А., Васюкова О.В., Тюльпаков А.Н. Неиммунный тиреотоксикоз, обусловленный активирующей мутацией гена рецептора тиреотропного гормона (первое описание в России) // Проблемы эндокринологии. 2009. Т. 55. № 2. С. 48–50. https://doi.org/10.14341/probl200955248-50
  46. Agretti P., DeMarco G., Biagioni M. et al. Sporadic congenital nonautoimmune hyperthyroidism caused by P639S mutation in thyrotropin receptor gene // Eur. J. Pediatr. 2012. V. 171. № 7. Р. 1133–1137. https://doi.org/10.1007/s00431-012-1702-z
  47. Biebermann H., Winkler F., Handke D. et al. Molecular description of nonautoimmune hyperthyroidism at a neonate caused by a new thyrotropin receptor germline mutation // Thyroid Res. 2011. V. 3. № 4. https://doi.org/10.1186/1756-6614-4-S1-S8
  48. Führer D., Mix M., Wonerow Р. et al. Variable phenotype associated with Ser505Asn-activating thyrotropin-receptor germline mutation // Thyroid. 1999. V. 9. № 8. Р. 757–761. https://doi.org/10.1089/thy.1999.9.757
  49. Holzapfel H.P., Wonerow P., von Petrykowski W. et al. Sporadic congenital hyperthyroidism due to a spontaneous germline mutation in the thyrotropin receptor gene // J. Clin. Endocrinol. Metab. 1997. V. 82. № 11. Р. 3879–3884. https://doi.org/10.1210/jcem.82.11.4378
  50. Roberts S.A., Moon J.E., Dauber A., Smith J.R. Novel germline mutation (Leu512Met) in the thyrotropin receptor gene (TSHR) leading to sporadic nonautoimmune hyperthyroidism // J. Pediatr. Endocrinol. Metab. 2017. V. 30. № 3. Р. 343–347. https://doi.org/10.1515/jpem-2016-0185
  51. Esapa C.T., Duprez L., Ludgate M. et al. A novel thyrotropin receptor mutation in an infant with severe thyroto- xicosis // Thyroid. 1999. V. 9. № 10. Р. 1005–1010. https://doi.org/10.1089/thy.1999.9.1005
  52. Aycan Z., Ağladıoğlu S.Y., Ceylaner S. et al. Sporadic nonautoimmune neonatal hyperthyroidism due to A623V germline mutation in the thyrotropin receptor gene // J. Clin. Res. Pediatr. Endocrinol. 2010. V. 2. № 4. Р. 168–172. https://doi.org/10.4274/jcrpe.v2i4.168
  53. Cho W.K., Ahn M.-B., Jang W. et al. Nonautoimmune congenital hyperthyroidism due to p.Asp633Glu mutation in the TSHR gene // Ann. Pediatr. Endocrinol. Metab. 2018. V. 23. № 4. Р. 235–239. https://doi.org/10.6065/apem.2018.23.4.235
  54. Karges B., Krause G., Homoki J. et al. TSH receptor mutation V509A causes familial hyperthyroidism by release of interhelical constraints between transmembrane helices TMH3 and TMH5 // J. Endocrinology. 2005. V. 186. № 2. Р. 377–385. https://doi.org/10.1677/joe.1.06208
  55. Nishihara E., Fukata S., Hishinuma A. et al. Sporadic congenital hyperthyroidism due to a germline mutation in the thyrotropin receptor gene (Leu512Gln) in a Japanese patient // Endocrine J. 2006. V. 53. № 6. Р. 735–740. https://doi.org/10.1507/endocrj.k06-090
  56. Zheng Liu, Feiyue Fan, Xiangjun Xiao, Yuanming Sun. Constitutive activation of the thyroid-stimulating hormone receptor (TSHR) by mutating Ile691 in the cytoplasmic tail segment // PLoS One. 2011. V. 6. № 1. Р. 1–8. https://doi.org/10.1371/journal.pone.0016335
  57. Lado-Abeal J., Castro-Piedras I., Palos-Paz F. et al. A family with congenital hypothyroidism caused by a combination of loss-of-function mutations in the thyrotropin receptor and adenylate cyclase-stimulating G alpha-protein subunit genes // Thyroid. 2011. V. 21. № 2. Р. 103–109. https://doi.org/10.1089/thy.2010.018
  58. Cetani F., Tonacchera M., Pinchera A. et al. Genetic analysis of the TSH receptor gene in differentiated human thyroid carcinomas // J. Endocrinol. Invest. 1999. V. 22. № 4. Р. 273–278. https://doi.org/10.1007/BF03343556
  59. Tonacchera M., Di Cosmo C., De Marco G. et al. Identification of TSH receptor mutations in three families with resistance to TSH // Clin. Endocrinol. Oxf. 2007. V. 67. № 5. Р. 712–718. https://doi.org/10.1111/j.1365-2265.2007.02950.x
  60. Baş V.N., Cangul H., Agladioglu S.Y. et al. Mild and severe congenital primary hypothyroidism in two patients by thyrotropin receptor (TSHR) gene mutation // J. Pediatr. Endocrinol. Metab. 2012. V. 25. № 11–12. Р. 1153–1156. https://doi.org/10.1515/jpem-2012-0211
  61. Zhang Hong-Mei, Zhou Ya-Qin, Dong Yan, Su Qing. Identification and functional characterization of a novel thyrotropin receptor mutation (V87L) in a Chinese woman with subclinical hypothyroidism // Exp. Ther. Med. 2017. V. 13. № 1. Р. 290–294. https://doi.org/10.3892/etm.2016.3957
  62. Cerbone M., Agretti P., De Marco G. et al. Non-autoimmune subclinical hypothyroidism due to a mutation in TSH receptor: report on two brothers // Case Reports Ital. J. Pediatr. 2013. V. 39. № 1. Р. 1–5. https://doi.org/10.1186/1824-7288-39-5
  63. Biebermann H., Schöneberg T., Krude H. et al. Mutations of the human thyrotropin receptor gene causing thyroid hypoplasia and persistent congenital hypothyroidism // J. Clin. Endocrinol. Metab. 1997. V. 82. № 10. Р. 3471–3480. https://doi.org/10.1210/jcem.82.10.4286
  64. Narumi S., Muroya K., Abe Y. et al. TSHR mutations as a cause of congenital hypothyroidism in Japan: A population-based genetic epidemiology study // J. Clin. Endocrinol. Metab. 2009. V. 94. № 4. Р. 1317–1323. https://doi.org/10.1210/jc.2008-1767
  65. Tenenbaum-Rakover Y., Almashanu S., Hess О. et al. Long-term outcome of loss-of-function mutations in thyrotropin receptor gene // Thyroid. 2015. V. 25. № 3. Р. 292–299. https://doi.org/10.1089/thy.2014.0311
  66. Nicoletti A., Bal M., De Marco G. et al. Thyrotropin-stimulating hormone receptor gene analysis in pediatric patients with non-autoimmune subclinical hypothyroidism // J. Clin. Endocrinol. Metab. 2009. V. 94. № 11. Р. 4187–4194. https://doi.org/10.1210/jc.2009-0618
  67. Tonacchera M., Perri A., De Marco G. et al. Low prevalence of thyrotropin receptor mutations in a large series of subjects with sporadic and familial nonautoimmune subclinical hypothyroidism // J. Clin. Endocrinol. Metab. 2004. V. 89. № 11. Р. 5787–5793. https://doi.org/10.1210/jc.2004-1243
  68. Camilot M., Teofoli F., Gandini A. et al. Thyrotropin receptor gene mutations and TSH resistance: variable expressivity in the heterozygotes // Clin. Endocrinol. Oxf. 2005. V. 63. № 2. Р. 146–151. https://doi.org/10.1111/j.1365-2265.2005.02314.x
  69. Lábadi Á., Grassi E.S., Gellén B. et al. Metab loss-of-function variants in a Hungarian Cohort reveal structural insights on TSH receptor maturation and signaling // J. Clin. Endocrinol. Metab. 2015. V. 100. № 7. E1039–E1045. https://doi.org/10.1210/jc.2014-4511
  70. Jeziorowska A., Pniewska-Siark B., Brzeziańska E. et al. A novel mutation in the thyrotropin (thyroid-stimulating hormone) receptor gene in a case of congenital hypothyroidism // Thyroid. 2006. V. 16. № 12. Р. 1303–1309. https://doi.org/10.1089/thy.2006.16.1303
  71. Kanda K., Mizuno H., Sugiyama Y. et al. Cli- nical significance of heterozygous carriers associated with compensated hypothyroidism in R450H, a common inactivating mutation of the thyrotro- pin receptor gene in Japanes // Endocrine. 2006. V. 30. № 3. Р. 383–388. https://doi.org/10.1007/s12020-006-0018-z
  72. Mizuno H., Kanda K., Sugiyama Y. et al. Longitudinal evaluation of patients with a homozygous R450H mutation of the TSH receptor gene // Horm Res. 2009. V. 71. № 6. Р. 318–323. https://doi.org/10.1159/000223415
  73. Chang Wei-Chiao, Liao Cheng-Yu, Chen Wei-Chiao et al. R450H TSH receptor mutation in congenital hypothyroidism in Taiwanese children // Clin. Chim. Acta. 2012. V. 413. № 11–12. Р. 1004–1007. https://doi.org/10.1016/j.cca.2012.02.02
  74. Narumi S., Muroya K., Abe Y. et al. TSHR mutations as a cause of congenital hypothyroidism in Japan: A po- pulation-based genetic epidemiology study // J. Clin. Endocrinol. Metab. 2009. V. 94. № 4. Р. 1317–1323. https://doi.org/10.1210/jc.2008-1767
  75. Tsunekawa K., Yanagawa Y., Aoki T. et al. Frequency and clinical implication of the R450H mutation in the thyrotropin receptor gene in the Japanese population detected by Smart Amplification Process 2 // Biomed. Res. Int. 2014. Р. 1–7. https://doi.org/10.1155/2014/964635
  76. Осиповская М.А., Кияев А.В., Макрецкая Н.А. и др. Синдром резистентности к тиреотропному гормону: описание семейного случая // Клин. и эксперим. тиреоидология. 2015. Т. 11. № 4. С. 36–39. https://doi.org/10.14341/ket2015436-39
  77. De Marco G., Agretti P., Camilot M. et al. Functional studies of new TSH receptor (TSHr) mutations identified in patients affected by hypothyroi- dism or isolated hyperthyrotrophinaemia // Clin. Endocrinol. Oxf. 2009. V. 70. № 2. Р. 335–338. https://doi.org/10.1111/j.1365-2265.2008.03333.x
  78. Moia S., Godi M., Walker G.E. et al. The mutation in the TSHR gene brings on subclinical hypothyroidism through an haploinsufficiency mechanism // J. Endocrinol. Invest. 2013. V. 36. № 9. Р. 716–721. https://doi.org/10.3275/8930
  79. Qiu Ya-Li, Ma Shao-Gang, Liu Hong, Yue Hong-Ni. Two novel TSHR gene mutations (p.R528C and c.392+4del4) associated with congenital hypo-thyroidism // Endocr. Res. 2016. V. 41. № 3. Р. 180–184. https://doi.org/10.3109/07435800.2015.1124438
  80. Jordan N., Williams N., Gregory J.W. et al. The W546X mutation of the thyrotropin receptor gene: Potential major contributor to thyroid dysfunction in a Caucasian population // J. Clin. Endocrinol. Metab. 2003. V. 88. № 3. Р. 1002–1005. https://doi.org/10.1210/jc.2002-021301
  81. Park S.-M., Clifton-Bligh R.J., Betts P., Chat- terjee V.K.K. Congenital hypothyroidism and apparent athyreosis with compound heterozygosity or compensated hypothyroidism with probable hemizygosity for inactivating mutations of the TSH receptor // Clin. Endocrinol. Oxf. 2004. V. 60. № 2. Р. 220–227. https://doi.org/10.1111/j.1365-2265.2004.01967.x
  82. Fricke-Otto S., Pfarr N., Mühlenberg R., Pohlenz J. Mild congenital primary hypothyroidism in a Turkish family caused by a homozygous missense thyrotropin receptor (TSHR) gene mutation (A593 V) // Exp. Clin. Endocrinol. Diabetes. 2005. V. 113. № 10. Р. 582–585. https://doi.org/10.1055/s-2005-865914
  83. Tiosano D., Pannain S., Vassart G. et al. The hypothyroidism in an inbred kindred with congenital thyroid hormone and glucocorticoid deficiency is due to a mutation producing a truncated thyrotropin receptor // Thyroid. 1999. V. 9. № 9. Р. 887–894. https://doi.org/10.1089/thy.1999.9.887
  84. Richter-Unruh A., Hauffa B.P., Pfarr N., Pohlenz J. Congenital primary hypothyroidism in a turkish family caused by a homozygous nonsense mutation (R609X) in the thyrotropin receptor gene // Thyroid. 2004. V. 14. № 11. Р. 971–974. https://doi.org/10.1089/thy.2004.14.971
  85. Cangul H., Bas V.N., Saglam Y. et al. A nonsense thyrotropin receptor gene mutation (R609X) is associated with congenital hypothyroidism and heart defects // J. Pediatr. Endocrinol. Metab. 2014. V. 27. № 11–12. Р. 1101–1105. https://doi.org/10.1515/jpem-2014-0025
  86. Cassio A., Nicoletti A., Rizzello A. Current loss- of-function mutations in the thyrotropin receptor gene: when to investigate, clinical effects, and treatment // J. Clin. Res. Pediatr. Endocrinol. 2013. V. 5. Suppl. 1. Р. 29–39. https://doi.org/10.4274/jcrpe.864
  87. Gagné N., Parma J., Deal C. et al. Apparent congenital athyreosis contrasting with normal plasma thyroglobulin levels and associated with inactivating mutations in the thyrotropin receptor gene: Are athyreosis and ectopic thyroid distinct entities? // J. Clin. Endocrinol. Metab. 1998. V. 83. № 5. Р. 1771–1775. https://doi.org/10.1210/jcem.83.5.4771
  88. Alberti L., Proverbio M.C., Costagliola S. et al. Germline mutations of TSH receptor gene as cause of nonautoimmune subclinical hypothyroidism // J. Clin. Endocrinol. Metab. 2002. V. 87. № 6. Р. 2549–2555. https://doi.org/10.1210/jcem.87.6.8536
  89. Narumi S., Hasegawa T. TSH resistance revisited // Endocrine J. 2015. V. 62. № 5. P. 393–398. https://doi.org/10.1507/endocrj.EJ15-0131
  90. Cangul H., Saglam H., Saglam Ya. et al. An essential splice site mutation (c.317+1G>A) in the TSHR gene leads to severe thyroid dysgenesis // J. Pediatr. Endocrinol. Metab. 2014. V. 27. № 9–10. Р. 1021–1025. https://doi.org/10.1515/jpem-2014-0048
  91. Watanabe D., Yagasaki H., Ishii S. et al. A novel c.1391_1428delins T mutation in TSHR as a cause of familial congenital hypothyroidism with delayed onset // Pediatr. Neonatol. 2020. V. 61. № 1. Р. 114–116. https://doi.org/10.1016/j.pedneo.2019.11.003
  92. Zhe-feng Yuan, Yan-fei Luo, Yi-dong Wu et al. Thyrotropin receptor gene inactivating mutation in Chinese children with congenital hypothyroidism // Clin. Chim. Acta. 2007. V. 45. № 7. Р. 508–512. PMID: 17953807
  93. Shao-Gang Ma, Pei-Hua Fang, Bing Hong, Wei-Nan Yu. The R450H mutation and D727E polymorphism of the thyrotropin receptor gene in a Chinese child with congenital hypothyroidism // J. Pediatr. Endocrinol. Metab. 2010. V. 23. № 12. Р. 1339–1344. https://doi.org/10.1515/jpem.2010.209
  94. Alves E.A.C., Andrade R.C., de Melo C.E. et al. Evaluation of the tshr gene reveals polymorphisms associated with typical symptoms in primary congenital hypothyroidism // J. Pediatr. Endocrinol. Metab. 2016. V. 29. № 1. Р. 71–76. https://doi.org/10.1515/jpem-2015-0130
  95. Chunyun Fu, Jin Wang, Shiyu Luo et al. Next-generation sequencing analysis of TSHR in 384 Chinese subclinical congenital hypothyroidism (CH) and CH patients // Clin. Chim. Acta. 2016. V. 462. Р. 127–132. https://doi.org/10.1016/j.cca.2016.09.007
  96. Alves E.A.C., Cleber M.C., Clebson P.P. et al. High frequency of D727E polymorphisms in exon 10 of the TSHR gene in Brazilian patients with congenital hypothyroidism // J. Pediatr. Endocrinol. Metab. 2010. V. 23. № 12. Р. 1321–1328. https://doi.org/10.1515/jpem.2010.206
  97. Ruggeri R.M., Campennì A., Giovinazzo S. et al. Follicular variant of papillary thyroid carcinoma presenting as toxic nodule in an adolescent: coexistent polymorphism of the TSHR and Gsα genes // Thyroid. 2013. V. 23. № 2. Р. 239–242. https://doi.org/10.1089/thy.2012.0279
  98. Nishihara E., Chen C.-R., Mizutori-Sasai Y. et al. Deletion of thyrotropin receptor residue Asp403 in a hyperfunctioning thyroid no- dule provides insight into the role of the ec- todomain in ligand-induced receptor activation // J. Endocrinol. Invest. 2012. V. 35. № 1. Р. 49–53. https://doi.org/10.3275/7738
  99. Ohno M., Endo T., Ohta K. et al. Point mutations in the thyrotropin receptor in human thyroid tumors // Thyroid. 1995. V. 5. № 2. Р. 97–100. https://doi.org/10.1089/thy.1995.5.97
  100. Nanba K., Usui T., Minamiguchi S. et al. Two rare TSH receptor amino acid substitutions in toxic thyroid adenomas // Endocrine J. 2012. V. 59. № 1. Р. 13–19. https://doi.org/10.1507/endocrj.ej11-0202
  101. Trülzsch B., Krohn K., Wonerow P. et al. Detection of thyroid-stimulating hormone receptor and Gs alpha mutations: In 75 toxic thyroid nodules by denaturing gradient gel electrophoresis // J. Mol. Med. (Berl). 2001. V. 78. № 12. Р. 684–691. https://doi.org/10.1007/s001090000170
  102. Vanvooren V., Uchino S., Duprez L. et al. Oncogenic mutations in the thyrotropin receptor of autonomously functioning thyroid nodules in the Japanese population // Eur. J. Endocrinol. 2002. V. 147. № 3. Р. 287–291. https://doi.org/10.1530/eje.0.1470287
  103. Kraemer S., Rothe K., Pfaeffle R. et al. Activating TSH-receptor mutation (Met453Thr) as a cause of adenomatous non-autoimmune hyperthyroidism in a 3-year-old boy // J. Pediatr. Endocrinol. Metab. 2009. V. 22. № 3. Р. 269–274. https://doi.org/10.1515/jpem.2009.22.3.269
  104. Nishihara E., Amino N., Maekawa K. et al. Prevalence of TSH receptor and Gsalpha mutations in 45 autonomously functioning thyroid nodules in Japan // Endocr. J. 2009. V. 56. № 6. Р. 791–798. https://doi.org/10.1507/endocrj.k09e-073
  105. Eszlinger M., Niedziela M., Typlt E. et al. Somatic mutations in 33 benign and malignant hot thyroid nodules in children and adolescents // Mol. Cell Endocrinol. 2014. V. 393. № 1–2. Р. 39–45. https://doi.org/10.1016/j.mce.2014.05.023
  106. Gozu H., Avsar M., Bircan R. et al. Does a Leu 512 Arg thyrotropin receptor mutation cause an autonomously functioning papillary carcinoma? // Thyroid. 2004. V. 14. № 11. Р. 975–980. https://doi.org/10.1089/thy.2004.14.975
  107. Blackburn J., Giri D., Ciolka B. et al. A rare case of heterozygous gain of function thyrotropin receptor mutation associated with development of thyroid follicula carcinoma // Case Rep. Genet. 2018. https://doi.org/10.1155/2018/1381730
  108. Sykiotis G.P., Neumann S., Georgopoulos N.A. et al. Functional significance of the thyrotropin receptor germline polymorphism D727E // Biochem. Biophys. Res. Commun. 2003. V. 301. № 4. Р. 1051–1056. https://doi.org/10.1016/s0006-291x(03)00071-8
  109. Russo D., Arturi F., Wicker R. et al. Genetic alterations in thyroid hyperfunctioning adenomas // J. Clin. Endocrinol. Metab. 1995. V. 80. № 4. Р. 1347–1351. https://doi.org/10.1210/jcem.80.4.7714109
  110. Russo D., Arturi F., Suarez H.G. et al. l. Thyrotropin receptor gene alterations in thyroid hyperfunctioning adenomas // J. Clin. Endocrinol. Metab. 1996. V. 81. № 4. Р. 1548–1551. https://doi.org/10.1210/jcem.81.4.8636365
  111. Takeshita A., Nagayama Y., Yokoyama N. et al. Rarity of oncogenic mutations in the thyrotropin receptor of autonomously functioning thyroid nodules in Japan // J. Clin. Endocrinol. Metab. 1995. V. 80. № 9. Р. 2607–2611. https://doi.org/10.1210/jcem.80.9.7673402
  112. Tonacchera M., Chiovato L., Pinchera A. et al. Hyperfunctioning thyroid nodules in toxic multinodular goiter share activating thyrotropin receptor mutations with solitary toxic adenoma // J. Clin. Endocrinol. Metab. 1998. V. 83. № 2. P. 492–498. https://doi.org/ 10.1210/jcem.83.2.4559
  113. Niepomniszcze H., Suárez H., Pitoia F. et al. Follicular carcinoma presenting as autonomous functioning thyroid nodule and containing an activating mutation of the TSH receptor (T620I) and a mutation of the Ki-RAS (G12C) genes // Thyroid. 2006. V. 16. № 5. Р. 497–503. https://doi.org/10.1089/thy.2006.16.497
  114. Russo D., Arturi F., Schlumberger M. et al. Activating mutations of the TSH receptor in differentiated thyroid carcinomas // Oncogene. 1995. V. 11. № 9. Р. 1907–1911. PMID: 7478621
  115. Palos-Paz F., Perez-Guerra O., Cameselle-Teijeiro J. et al. Prevalence of mutations in TSHR, GNAS, PRKAR1A and RAS genes in a large series of to-xic thyroid adenomas from Galicia, an iodine-deficient area in NW Spain // Eur. J. Endocrinol. 2008. V. 159. № 5. Р. 623–631. https://doi.org/10.1530/EJE-08-0313
  116. Gozu H.I., Bircan R., Krohn K. et al. Similar prevalence of somatic TSH receptor and Gs alpha mutations in toxic thyroid nodules in geographical regions with different iodine supply in Turkey // Eur. J. Endocrinol. 2006. V. 155. № 4. Р. 535–545. https://doi.org/10.130/eje.1.02253
  117. Castro I., Lima L., Seoane R., Lado-Abeal J. Identification and functional characterization of two novel activating thyrotropin receptor mutants in toxic thyroid follicular adenomas // Thyroid. 2009. V. 19. № 6. Р. 645–649. https://doi.org/10.1089/thy.2009.0002
  118. Porcellini A., Ciullo I., Laviola L. et al. Novel mutations of thyrotropin receptor gene in thyroid hyperfunctioning adenomas. Rapid identification by fine needle aspiration biopsy // J. Clin. Endocrinol. Metab. 1994. V. 79. № 2. Р. 657–661. https://doi.org/10.1210/jcem.79.2.8045989
  119. Spambalg D., Sharifi N., Elisei R. et al. Structural studies of the thyrotropin receptor and Gs alpha in human thyroid cancers: low prevalence of mutations predicts infrequent involvement in malignant transformation // J. Clin. Endocrinol. Metab. 1996. V. 81. № 11. Р. 3898–3901. https://doi.org/10.1210/jcem.81.11.8923835
  120. Führer D., Tannapfel A., Sabri O. et al. Two somatic TSH receptor mutations in a patient with toxic metastasising follicular thyroid carcinoma and non-functional lung metastases // Endocr. Relat. Cancer. 2003. V. 10. № 4. Р. 591–600. https://doi.org/10.1677/erc.0.0100591
  121. Russo D., Wong M.G., Costante G.E. et al. A Val677 activating mutation of the thyrotropin receptor in a Hürthle cell thyroid carcinoma associated with thyrotoxicosis // Thyroid. 1999. V. 9. № 1. Р. 13–17. https://doi.org/10.1089/thy.1999.9.13
  122. Tonacchera M., Agretti P., Chiovato L. et al. Activating thyrotropin receptor mutations are present in nonadenomatous hyperfunctioning nodules of toxic or autonomous multinodular goiter // J. Clin. Endocrinol. Metab. 2000. V. 85. № 6. Р. 2270–2274. https://doi.org/10.1210/jcem.85.6.6634
  123. Takeshita A., Nagayama Y., Yamashita S. et al. Sequence analysis of the thyrotropin (TSH) receptor gene in congenital primary hypothyroidism associated with TSH unresponsiveness // Thyroid. 1994. V. 4. № 3. Р. 255–259. https://doi.org/10.1089/thy.1994.4.255
  124. Sunthornthepvarakul T., Hayashi Y., Refetoff S. Polymorphism of a variant human thyrotropin receptor (hTSHR) gene // Thyroid. 1994. V. 4. № 2. Р. 147–149. https://doi.org/10.1089/thy.1994.4.147
  125. Zhe-feng Yuan, Yan-fei Luo, Yi-dong Wu et al. Thyrotropin receptor gene inactivating mutation in Chinese children with congenital hypothyroidism // Zhonghua Er Ke Za Zhi. 2007. V. 45. № 7. Р. 508–512. PMID: 17953807
  126. Grüters A., Schöneberg T., Biebermann H. et al. Severe congenital hyperthyroidism caused by a germ-line neo mutation in the extracellular portion of the thyrotropin receptor // J. Clin. Endocrinol. Metab. 1998. V. 83. № 5. Р. 1431–1436. https://doi.org/10.1210/jcem.83.5.4776
  127. Mueller S., Gozu H.I., Bircan R. et al. Cases of borderline in vitro constitutive thyrotropin receptor activity: How to decide whether a thyrotropin receptor mutation is constitutively active or not? // Thyroid. 2009. V. 19. № 7. Р. 765–773. https://doi.org/10.1089/thy.2009.0006
  128. Lima T., Cerqueira O., Carré A. et al. Functio- nal characterization of the novel sequence variant p.S304R in the hinge region of TSHR in a conge- nital hypothyroidism patients and analogy with other formerly known mutations of this gene portion. Comparative Study // J. Pediatr. Endocrinol. Metab. 2015. V. 28. № 7–8. Р. 777–784. https://doi.org/10.1515/jpem-2014-0194
  129. Ban Yi., Greenberg D.A., Concepcion E.-S., Tomer Ya. A germline single nucleotide polymorphism at the intracellular domain of the human thyrotropin receptor does not have a major effect on the development of Graves' disease // Meta-Analysis Thyroid. 2002. V. 12. № 12. Р. 1079–1083. https://doi.org/10.1089/105072502321085171
  130. Mueller S., Jaeschke H., Gunther R., Paschke R. The hinge region: An important receptor component for GPHR function // Trends in Endocrinology and Metabolism. 2010. V. 21. № 2. Р. 111–122. https://doi.org/10.1016/j.tem.2009.09.001
  131. Kleinau G., Worth C.L., Kreuchwig A. et al. Structural–functional features of the thyrotropin receptor: A class A G-protein-coupled receptor at work // Frontiers in Endocrinology. 2017. V. 8. Р. 1–25. https://doi.org/10.3389/fendo.2017.00086

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025