COVID-19 and the risk of herpesvirus reactivation


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Objective. To study the features of the epidemic process of infections caused by herpes simplex virus types 1 and 2 (HSV-1, HSV-2), Epstein-Barr virus (EBV), cytomegalovirus (CMV), and human herpes virus type 6 (HHV-6) during the COVID-19 pandemic. Materials and methods. The incidence of COVID-19 and recorded herpesvirus infections was retrospectively analyzed. Ninety-two blood donors and 95 COVID-19 patients without respiratory failure were examined for herpes virus infection markers. Results. There was an earlier and longer surge in the incidence of infectious mononucleosis in 2020 versus 2019; there were no significant differences between the groups of patients and donors in the detection rate of IgG to HSV-1 (88-91.6%), HSV-2 (20-20.7%), EBV(98.9-100%), CMV(82.1-83.7%), HHV-6 (48.4-51.1%); low-avidity IgG to HSV(6.5-8.4%); EBV(2.2-6.3%) and CMV(0-1.1%); IgM to HSV-1 (0%), HSV-2 (0-1.1%,), CMV (0-2.2%), and HHV- 6 (5.4-8.4%). EBV reactivation markers (VCA IgM and EA IgG in the presence of VCA IgG and EBNA IgG) were significantly more frequently detected in patients (70.5 and 56.8%) than in donors (0 and 2.2%) (p < 0.05). Conclusion. SARS- CoV-2 is a factor that triggers the mechanism of EBV transition from latency to lytic reproduction in the human body, whereas COVID-19 patients are at risk for reactivation of chronic EBV infection.

Full Text

Restricted Access

About the authors

Tatiana V. Solomay

Interregional Department One, Federal Biomedical Agency of Russia; I.I. Mechnikov Research Institute of Vaccines and Sera, Ministry of Education and Science of Russia

Email: solomay@rambler.ru
Cand. Med. Sci., Deputy Head, Interregional Department One; Senior Researcher, Laboratory for Epidemiological Analysis and Monitoring of Infectious Diseases

Tatiana A. Semenenko

Honorary Academician N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of Russia; I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia

Email: semenenko@gamaleya.org
MD, Head, Department of Epidemiology; Professor, Department of Infectology and Virology

Elena I. Isaeva

Honorary Academician N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of Russia

Email: immunol.lab@mail.ru
Cand. Biol. Sci., Leading Researcher, Laboratory of Immunology, D.I. Ivanovsky Research Institute of Virology

Elizaveta N. Vetrova

Honorary Academician N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of Russia

Researcher, Laboratory of Immunology, D. I. Ivanovsky Research Institute of Virology

Alyona I. Chernyshova

Honorary Academician N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of Russia

Junior Researcher, Laboratory of Immunology, D. I. Ivanovsky Research Institute of Virology

Elina V. Romenskaya

N.N. Burdenko Main Military Clinical Hospital, Ministry of Defense of Russia

Email: elinaromenskaya@yandex.ru
Epidemiologist, Branch Eight

Nataliya V. Karazhas

Honorary Academician N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of Russia

Email: karazhas@inbox.ru
BD, Head, Laboratory of Epidemiology of Opportunistic Infections

References

  1. Johnson R.W., Bouhassira D., Kassianos G., Leplfege A., Schmader K.E., Weinke T. The impact of herpes zoster and post-herpetic neuralgia on quality-of-life. BMC Med. 2010; (8): 37. doi: 10.1186/1741-7015-8-37
  2. Damm O., Witte J., Wetzka S., Prosser C., Braun S., Welte R., Greiner W. Epidemiology and economic burden of measles, mumps, pertussis, and varicella in Germany: a systematic review. Int. J. Public. Health 2016; 61(7): 847-60. doi: 10.1007/s00038-016-0842-8
  3. Ablashi D., Agut H., Alvarez-Lafuente R., Clark D.A., Dewhurst S., DiLuca D. et al. Classification of HHV-6A and HHV-6B as distinct viruses. Arch. Virol. 2014; 159(5): 863-70. doi: 10.1007/s00705-013-1902-5
  4. Мелехина Е.В., Лысенкова М.Ю., Свитич О.А., Музыка А.Д., Каражас Н.В., Рыбалкина Т.Н. и др. Особенности течения инфекции ВГЧ-6А и ВГЧ-6В у детей, проживающих в Московском регионе. Эпидемиол. инфекц. болезни. Актуал. вопр. 2018; (2): 42-9. doi: 10.18565/epidem.2018.2.42-9
  5. Соломай Т.В., Семененко Т.А., Каражас Н.В., Рыбалкина Т.Н., Корниенко М.Н., Бошьян Р.Е. и др. Оценка риска инфицирования герпесвирусами при переливании донорской крови и ее компонентов. Анализ риска здоровью 2020; (2): 135-42 doi: 10.21668/health. risk/2020.2.15.eng
  6. Соломай Т.В., Семененко Т.А. Вирусные гепатиты В, Сиинфекционный мононуклеоз: эпидемиологическое сходство и различия. Вопросы вирусологии 2020; 65(1): 27-34 doi: https://doi.org/10.36233/0507-4088-2020-65-1-27-34
  7. Sharifipour S., Davoodi Rad K. Seroprevalence of Epstein-Barr virus among children and adults in Tehran, Iran. New Microbes New Infect. 2020; 34: 100641. doi: 10.1016/j.nmni.2019.100641
  8. Cui J., Yan W., Xu S., Wang Q., Zhang W., Liu W., Ni A. Anti-Epstein-Barr virus antibodies in Beijing during 2013-2017: What we have found in the different patients. PLoS One 2018; 13(3): e0193171. doi: 10.1371/journal. pone.0193171
  9. Beader N., Kolarid B., Slacanac D., Tabain I., Vilibid-Cavlek T. Seroepidemiological Study of Epstein-Barr Virus in Different Population Groups in Croatia. Isr. Med. Assoc. J. 2018; 20(2): 86-90.
  10. Smatti M.K., Yassine H.M., Abu Odeh R., Al Marawani A., Taleb S.A., Althani A.A., Nasrallah G.K. Prevalence and molecular profiling of Epstein-Barr virus (EBV) among healthy blood donors from different nationalities in Qatar. PLoS One 2017; 12(12): e0189033. doi: 10.1371/journal. pone.0189033
  11. Соломай Т.В., Семененко Т.А., Каражас Н.В., Рыбалкина Т.Н., Веселовский П.А., Пульнова Н.Л. и др. Особенности изменения показателей иммунного статуса лиц с активными и латентными формами герпесвирусных инфекций. Пермский медицинский журнал 2021; 38 (1): 46-63. doi: 10.17816/ pmj38146%63
  12. Wang F., Nie J., Wang H., Zhao Q., Xiong Y., Deng L. et al. Characteristics of Peripheral Lymphocyte Subset Alterationin COVID-19 Pneumonia. J. Infect. Dis. 2020; 221(11): 1762-9. doi: 10.1093/infdis/jiaa150
  13. Matsubara H., Konishi T., Saito K., Naito A., Sugisawa J., Nakayama S. et al. Zoster duplex in a patient with influenza a and bacterial superinfection. J. Dermatol. 2020; 47(1): e32-e33. doi: 10.1111/1346-8138.15099
  14. Pereiro T., Lourido T., Ricoy J., Valdes L. Influenza Virus, Herpes Simplex Virus and Methicillin-Resistant Staphylococcus arneus in an Immunocompetent Patient. Arch. Bronconeumol. 2018; 54(3): 159-60. doi: 10.1016/j. arbres.2017.07.005
  15. Li C., Li Y., Yang Y., Wang J., Zhu C., Tang S. et al. The Detection and Characterization of Simplex Virus Type 1 in Confirmed Cases. Sci. Rep. 2019; 9(1): 12785. doi: 10.1038/ s41598-019-48994-5
  16. Rathore S.K., Dwibedi B., Pati S.S., Panda S., Panda M., Sabat J., Kar S.K. An Investigation on the Coinfection Measles and HSV-1 in Hospitalized Acute Encephalitis Syndrome Patients in Eastern India. Neurol. India 2019; 67(5): 1358-9. doi: 10.4103/0028-3886.271247
  17. Anaedobe C.G., Ajani T.A. Co Simplex Virus Type 2 and HIV Infections among Pregnant Women in Ibadan, Nigeria. J. Glob. Infect. Dis. 2019; 11(1): 19-24. doi: 10.4103/jgid.jgid_56_18
  18. Ferreira A.C., Romao T.T., Macedo Y.S., Pupe C., Nascimento O.J.M.; Fellow of the American Academy of Neurology (FAAN). COVID-19 and Herpes zoster coinfection presenting with trigeminalneuropathy. Eur J. Neurol. 2020; 27(9): 1748-50. doi: 10.1111/ene.14361.
  19. Tartari F., Spadotto A., Zengarini C., Zanoni R., Guglielmo A., Adorno A. et al. Herpes zoster in COVID-19-positive patients. In. J. Dermatol. 2020; 59(8): 1028-9. doi: 10.1111/ijd.15001
  20. Elsaie M.L., Youssef E.A., Nada H.A. Herpes zoster might be an indicator for latent COVID-19 infection. Dermatol. Ther. 2020; 33(4): e13666. doi: 10.1111/dth.13666
  21. Le Balc’h P., Pinceaux K., Pronier C., Seguin P., Tadi6 J.M., Reizine F. Herpes simplex virus and cytomegalovirus reactivations among severe COVID-19 patients. Crit. Care 2020; 24(1): 530. doi: 10.1186/s13054-020-03252-3
  22. Sinadinos A., Shelswell J. Oral ulceration and blistering in patients with COVID-19. Evid. Based. Dent. 2020; 21(2): 49. doi: 10.1038/s41432-020-0100-z
  23. Bond P. Ethnicity and the relationship between covid-19 and the herpes simplex viruses. Med. Hypotheses 2021; 146: 110447. doi: 10.1016/j.mehy.2020.110447
  24. Amorim Dos Santos J., Normando A.G.C., Carvalho da Silva R.L., De Paula R.M., Cembranel A.C. et al. Oral mucosal lesions in a COVID-19 patient: New signs or secondary manifestations? Int. J. Infect. Dis. 2020; 97: 326-8. doi: 10.1016/j.ijid.2020.06.012
  25. Xu R., Zhou Y., Cai L., Wang L., Han J., Yang X. et al. Co-reactivation of the human herpesvirus alpha subfamily (herpes simplex virus-1 and varicella zoster virus) in a critically ill patient with COVID-19. Br. J. Dermatol. 2020; 183(6): 1145-7. doi: 10.1111/bjd.19484
  26. Cao X., Zhang X., Meng W., Zheng H. Herpes Zoster and Postherpetic Neuralgia in an Elderly Patient with Critical COVID-19: A Case Report. J. Pain. Res. 2020; 13: 2361-5. doi: 10.2147/JPR.S274199
  27. Dursun R., Temiz S.A. The clinics of HHV-6 infection in COVID-19 pandemic: Pityriasisrosea and Kawasaki disease. Dermatol. Ther. 2020; 33(4): e13730. doi: 10.1111/dth.13730
  28. Brambilla L., Maronese C.A., Tourlaki A., Veraldi S. Herpes zoster following COVID-19: a report of three cases. Eur. J. Dermatol. 2020; 30(6): 754-6. doi: 10.1684/ejd.2020.3924
  29. Kadambari S., Klenerman P., Pollard A.J. Why the elderly appear to be more severely affected by COVID-19: The potential role of immunosenescence and CMV. Rev. Med. Virol. 2020; 30(5): e2144. doi: 10.1002/rmv.2144
  30. Amaral PH., Ferreira B.M., Roll S., Neves P.D., Pivetta L,G,, Mohrbacher S. et al. COVID-19 and Cytomegalovirus Co-infection: A Challenging Case of a Critically Ill Patient with Gastrointestinal Symptoms. Eur. J. Case Rep. Intern. Med. 2020; 7(10): 001911. doi: 10.12890/2020_001911
  31. Garcia-Martinez F.J., Moreno-Artero E., Jahnke S. SARS-CoV-2 and EBV. Med. Clin. (Engl). 2020; 155(7): 319-20. doi: 10.1016/j.medcle.2020.06.010
  32. Соломай Т.В., Филатов Н.Н. Сезонность инфекции, вызванной вирусом Эпштейна-Барр. Журнал инфектологии 2020; 12(4): 93-100. doi: 10.22625/2072-67322020-12-4-93-100
  33. Huang W., Berube J., McNamara M., Saksena S., Hartman M., Arshad T. et al. Lymphocyte subset counts in COVID-19 Patients: a meta-analysis. Cytometrya 2020; 97(8): 772- 6. doi: 10.1002/cyto.a.24172
  34. Mehta S.K., Bloom D.C., Plante I., Stowe R., Feiveson A.H., Renner A. et al. Reactivation of Latent Epstein-Barr Virus: A Comparison after Exposure to Gamma, Proton, Carbon, and Iron Radiation. Int. J. Mol. Sci. 2018;b19( 10): pii: E2961. doi: 10.3390/ijms19102961
  35. Баженова Л.Г., Ботвиньева И.А., Ренге Л.В., Полукаров А.Н. Динамика распространенности TORCHинфекций у беременных. Оценка риска первичного инфицирования плода. Мать и дитя в Кузбассе 2012; (1): 22-6.
  36. Островская О.В., Власова М.А., Наговицына Е.Б., Морозова О.И., Ивахнишина Н.М. Распространенность TORCH-инфекций у женщин Приамурья. Бюллетень физиологии и патологии дыхания 2008; 30: 72-7
  37. Herrera-Ortiz A., Conde-Glez C.J., Vergara-Ortega D.N., Garcia-Cisneros Olamendi-Portugal M.L., Sinchez-Alemin M.A. Avidity of antibodies against HSV-2 and risk to neonatal transmission among Mexican pregnant women. Infect. Dis. Obstet. Gynecol. 2013; 140-2. doi: 10.1155/2013/140142
  38. Reward E.E., Muo S.O., Orabueze I.N.A., Ike A.C. Seroprevalence of herpes simplex virus types 1 and 2 in Nigeria: a systematic review and meta-analyses. Pathog. Glob. Health 2019; 113(5): 229-37. doi: 10.1080/20477724.2019.1678938
  39. Dargham S.R., Nasrallah G.K., Al-Absi E.S., Mohammed L.I., Al-Disi R.S., Nofal M.Y., Abu-Raddad L.J. Herpes Simplex Virus Type 2 Seroprevalence Among Different National Populations of Middle East and North African Men. Sex. Transm. Dis. 2018; 45(7): 482-87. doi: 10.1097/OLQ.0000000000000791
  40. Beader N., Kolarid B., Slacanac D., Tabain I., Vilibid-Cavlek T. Seroepidemiological Study of Epstein-Barr virus in Different Population Groups in Croatia. Isr. Med. Assoc. J. 2018; 20 (2): 86-90.
  41. Fourcade G., Germi R., Guerber F., Lupo J., Baccard M., Seigneurin A. et al. Evolution of EBV seroprevalence and primary infection age in a French hospital and a city laboratory network, 2000-2016. PLoS One 2017; 12(4): e0175574. doi: 10.1371/journal.pone.0175574
  42. Lachmann R., Loenenbach A., Waterboer T., Brenner N., Pawlita M., Michel A. et al. Cytomegalovirus (CMV) in the adult population of Germany. PLoS One 2018; 13(7): e0200267. doi: 10.1371/journal.pone.0200267
  43. Cannon M.J., Schmid D.S., Hyde T.B. Review of cytomegalovirus seroprevalence and demographic characteristics associated with infection. Rev. Med.Virol. 2010; 20(4): 202-13. doi: 10.1002/rmv.655
  44. Aimola G., Beythien G., Aswad A., Kaufer B.B. Current understanding of herpesvirus 6 (HHV-6) chromosomal integration. Antiviral Res. 2020; 176: 104720. doi: 10.1016/j. antiviral.2020.104720
  45. Drago F., Ciccarese G., Rebora A., Parodi A. Human herpesvirus-6, -7, and Epstein-Barr virus reactivation in pityriasisrosea during COVID-19. J. Med. Virol. 2021; 93(4): 1850-1. doi: 10.1002/jmv.26549
  46. Paolucci S., Cassaniti I., Novazzi F., Fiorina L., Piralla A., Comolli G. et al. DNA increase in COVID-19 patients with impaired lymphocyte subpopulation count. Int. J. Infect. Dis. 2020; 104: 315-9. doi: 10.1016/j.ijid.2020.12.051

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Bionika Media