Modern approaches to the assessment of comorbidity in patients

Abstract


Aim. To provide modern data on advantages and disadvantages of available international comorbidity scales and indices. Materials and methods. Data of 29 scientific sources published in Russian and foreign literature press within 1973-2018 are considered. Results. The presence of comorbidity in a patient is an issue of modern medicine. In most cases some comorbid diseases if timely diagnosed and managed in accordance with algorithms for medical care can be corrected and treated. In order to control risks of development of complications and to prescribe an effective therapy for comorbidity the international and national clinical guidelines have been created. They include algorithms for clinical and instrumental assessment of complications and provide scales and indices, such as Cumulative lllness Rating Scale (CIRS), Charlson comorbidity index, Kaplan-Feinstein index, Index of Co-Existent Disease (ICED), Geriatric Index of Comorbidity (GIC), Functional Comorbidity Index (FCI) et al. Data of Canadian comparative study of 5 international scales of comorbidity in patients with head and neck cancers showed a significant impact of comorbidity on survival of patients with different stages of neoplasms. It was emphasized that the index of comorbidity is necessary to control an impact of comorbid diseases on the patients' status in the long-term period. The Kaplan-Feinstein scale was the best index for assessing a survival of patients with head and neck cancer. According to V.de Groot, the most widely studied comorbidity index for predicting mortality is the Charlson index. Each index has its advantages and disadvantages and is used in different clinical situations. Conclusion. General comorbidity index is a comprehensive summary score of a disease combination or severity, which combines all conditions, problems and illnesses of patients, weights them by severity, and it significantly affects treatment tactics and outcome in a future.

Full Text

Restricted Access

About the authors

Gulzhan I. Sarsenbayeva

Scientific Center of Pediatrics and Pediatric Surgery of the Ministry of Health of the Republic of Kazakhstan

Email: gulzhan75@mail.ru
146, Al-Farabi dr., Almaty, 050023, Republic of Kazakhstan
Cand. Sci. (Med.), Deputy Director for Science

Anar E. Tursynbekova

S.D.Asfendiyarov Kazakh National Medical University

Email: gulzhan75@mail.ru
88, Tole bi st., Almaty, 050012, Republic of Kazakhstan
3rd year of study PhD Candidate

References

  1. Белялов Ф.И. Сочетанные заболевания внутренних органов в терапевтической практике. Иркутск, 2009; с. 47-52.
  2. Campbell-Scherer D. Multimorbidity challenge ofevidence-based medicine. Evid Based Med 2010; 15: 165-6.
  3. Верткин А.Л., Румянцев М.А., Скотников А.С. Коморбидность в клинической практике. Часть 1. Архив внутренней медицины. 2011; 1: 9-13.
  4. Нургазизова А.К. Происхождение, развитие и современная трактовка понятий «коморбидность» и «полиморбидность». Казанский мед. журн. 2014; 95 (2): 292-6.
  5. Торосян Е.А., Торосян А.Ц., Семерджян В.В. «Черная дыра» медицины - полиморбидность. Вестн. новых медицинских технологий. 2008; 15 (1): 202-4.
  6. Wittchen H.U. What is comorbidity - fact or artifact? Br J Psychiatry 1996; 168 (Suppl.): 9-16.
  7. De Groot V, Beckerman H, Lankhorst G.J, Bouter L.M. How to measure comorbidity: a critical review of available methods. J Clin Epidemiol 2003; 56 (3): 221-9.
  8. Linn B.S. Linn M.W. Gurel L. Cumulative illness rating scale. J Am Geriatr Soc 1968; 16: 622-6.
  9. Mark D, Miller M.D, Towers A. Manual of Guidelines for Scoring the Cumulative Illness Rating Scale for Geriatrics (CIRS-G). Pittsburg, Pa: University of Pittsburgh, 1991; p. 31.
  10. Charlson M.E, Pompei P, Ales K.L et al. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chron Dis 1987; 40: 373-83.
  11. Van Manen J.G, Korevaar J.C, Dekker F.W et al. How to adjust for comorbidity in survival studies in ESRD patients: a comparison of different indices. Am J Kidney Dis 2002; 40: 82-9.
  12. Fried L, Bernardini J, Piraino B. Charlson comorbidity index as a predictor of outcomes in incident peritoneal dialysis patients. Am J Kidney Dis 2001; 37: 337-42.
  13. Hemmelgarn B.R, Manns B.J, Quan H et al. Adapting the Charlson Comorbidity Index for use in patients with ESRD. Am J Kidney Dis 2003; 42: 125-32.
  14. Deyo R.A, Cherkin D.C, Ciol M.A. Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases. J Clin Epidemiol 1992; 45 (6): 613-9.
  15. Kaplan M.H, Feinstein A.R. Acritique of methods in reported studies of long-term vascular complications in patients with diabetes mellitus. Diabetes 1973; 22 (3): 160-74.
  16. Greenfield S, Apolone G. The importance of coexistent disease in the occurrence of postoperative complications and one-year recovery in patients undergoing total hip replacement: Comorbidity and outcomes after hip replacement. Med Care 1993; 31: 141-54.
  17. Rozzini R, Frisoni G.B, Ferrucci L et al. GeriatricIndex of Comorbidity: validation and comparisonwith other measures of comorbidity. Age Ageing 2002; 31 (4): 277-85.
  18. Grolla D.L, Tob T, Bombardierc C, Wright J.G. The development of a comorbidity index with physical function as the outcome. J Clin Epidemiol 2005; 58 (6): 595-602.
  19. Preedy V.R, Watson R.R. Handbook of Diseases and a Measure of Quality of Life. New York: Springer, 2010. DOI: https:// doi.org/10.1007/978-0-387-78665-0
  20. Litwin M.S, Greenfield S, Elkin E.P et al. Assessment of Prognosis With the Total Illness Burden Index for Prostate Cancer. Cancer 2007; 109 (9): 1777-83.
  21. Hall S.F. What is best comorbidity index for retrospective survival studies in head and neck oncology. Canada 2001; p. 135.
  22. De Groot V, Beckerman H, Lankhorst G.J, Bouter L.M. How to measure comorbidity: a critical review of available methods. J Clin Epidemiol 2003; 56 (3): 221-9.
  23. Rhee D.S., Salazar J.H, Zhang Y et al. New multispecial surgical risk assessment for children. Pediatrics 2013; 131 (3): 829-36.
  24. Tai D, Dick P, To T, Wright J.G. Development of a children's comorbidity prediction model. Arch Pediatr Adolesc Med 2006; 160 (3): 293-9. doi: 10.1001/archpedi.160.3.293
  25. Jiang R, Wolf S, Alkazemi M.H et al. The evaluation of three comorbidity indices in predicting postoperative complications and readmissions in pediatric urology. J Pediatr Urol 2018; 14 (3): 244. doi: 10.1016/j.jpurol.2017.12.019
  26. Pollack M.M, Ruttimann U.E, Getson P.R. Pediatric risk of mortality (PRISM) score. Crit Care Med 1988; 16 (11): 1110-6.
  27. Губанова Г.В., Беляева Ю.Н., Шеметова Г.Н. Коморбидный пациент: этапы формирования, факторы риска и тактика ведения. Современные проблемы науки и образования. 2015; 6. http://www.science-education.ru/ru/article/ view?id=23986
  28. Белялов Ф.И. Двенадцать тезисов коморбидности. Клин. медицина. 2009; 87 (12): 69-71.
  29. Gijsen R, Hoeymans N, Schellevis F.G et al. Causes and consequences of comorbidity: a review. J Clin Epidemiol 2001; 54 (7): 661-74.

Statistics

Views

Abstract - 3

PDF (Russian) - 0

Cited-By


Article Metrics

Metrics Loading ...

PlumX

Dimensions

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies