О существовании управления с обратной связью для одной дробной модели Фойгта

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Изучается задача управления с обратной связью для одной математической модели, описывающей движение вязкоупругой жидкости с памятью вдоль траекторий движения поля скоростей. Доказывается существование оптимального управления, дающего минимум заданному ограниченному и полунепрерывному снизу функционалу качества.

Об авторах

А. В. Звягин

Воронежский государственный университет

Email: zvyagin.a@mail.ru
Воронеж, Россия

Е. И. Костенко

Воронежский государственный университет

Автор, ответственный за переписку.
Email: ekaterinalarshina@mail.ru
Воронеж, Россия

Список литературы

  1. Самко С.Г., Килбас А.А., Маричев О.И. Интегралы и производные дробного порядка и некоторые их приложения. Минск, 1987.
  2. Zvyagin V., Orlov V. Weak solvability of fractional Voigt model of viscoelasticity // Discrete and Continuous Dynamical Systems. 2018. V. 38. № 12. P. 6327-6350.
  3. Звягин А.В. О слабой разрешимости и сходимости решений дробной альфа-модели Фойгта движения вязкоупругой среды // Успехи мат. наук. 2019. Т. 74. № 3. С. 189-190.
  4. Звягин В.Г., Орлов В.П. О регулярности слабых решений обобщённой модели вязкоупругости Фойгта // Журн. вычислит. математики и мат. физики. 2020. Т. 60. № 11. С. 1933-1949.
  5. Звягин А.В. Исследование слабой разрешимости дробной альфа-модели Фойгта // Изв. РАН. Сер. мат. 2021. Т. 85. № 1. С. 66-97.
  6. Zvyagin V., Orlov V. Weak solvability of one viscoelastic fractional dynamics model of continuum with memory // J. of Math. Fluid Mech. 2021. V. 23. Art. 9.
  7. Zvyagin V.G., Kostenko E.I. Investigation of the weak solvability of one fractional model with infinite memory // Lobachevskii J. of Math. 2023. V. 44. № 3. P. 969-988.
  8. DiPerna R.J., Lions P.L. Ordinary differential equations, transport theory and Sobolev spaces // Inventiones Mathematicae. 1989. V. 98. № 3. P. 511-547.
  9. Crippa G. The ordinary differential equation with non-Lipschitz vector fields // Bollettino dell'Unione Matematica Italiana. 2008. V. 1. № 2. P. 333-348.
  10. Crippa G., de Lellis C. Estimates and regularity results for the diPerna-Lions flow // J. fur die reine und angewandte Mathematik. 2008. V. 616. P. 15-46.
  11. Фурсиков А.В. Оптимальное управление распределёнными системами. Теория и приложения. Новосибирск, 1999.
  12. Звягин А.В. Задача оптимального управления для стационарной модели слабо концентрированных водных растворов полимеров // Дифференц. уравнения. 2013. Т. 49. № 2. С. 245-249.
  13. Zvyagin V., Zvyagin A., Ustiuzhaninova A. Optimal feedback control problem for the fractional Voigt $\alpha $-model // Math. 2020. V. 8. № 7. Art. 1197.
  14. Звягин В.Г., Звягин А.В., Хонг Н.М. Об оптимальном управлении с обратной связью для модели движения нелинейно-вязкой жидкости // Дифференц. уравнения. 2021. Т. 57. № 1. С. 135-139.
  15. Звягин В.Г. Аппроксимационно-топологический подход к исследованию математических задач гидродинамики // Соврем. математика. Фунд. направления. 2012. Т. 46. С. 92-119.
  16. Звягин В.Г., Турбин М.В. Математические вопросы гидродинамики вязкоупругих сред. М., 2012.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2023