Shear strength of Al–Cu alloy with different types of hardening precipitates: molecular dynamics and continuum modeling

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A molecular dynamics study of the motion of dislocations in aluminum containing hardening copper precipitates is carried out. The paper considers the interaction of dislocation with four types of precipitates, the structure of which was determined in experimental work. The energy of dislocation segments attached to hardening phases is determined and used as a parameter of the continuum model of the dislocation-precipitate interaction. An increase in energy is observed for hybrid precipitates compared to non-hybrid ones.

Авторлар туралы

P. Bezborodova

Chelyabinsk State University

Хат алмасуға жауапты Автор.
Email: ibragimova-polin@mail.ru
Russia, 454001, Chelyabinsk

V. Krasnikov

Chelyabinsk State University

Email: ibragimova-polin@mail.ru
Russia, 454001, Chelyabinsk

M. Gazizov

Belgorod State National Research University

Email: ibragimova-polin@mail.ru
Russia, 308015, Belgorod

A. Mayer

Chelyabinsk State University

Email: ibragimova-polin@mail.ru
Russia, 454001, Chelyabinsk

V. Pogorelko

Chelyabinsk State University

Email: ibragimova-polin@mail.ru
Russia, 454001, Chelyabinsk

Әдебиет тізімі

  1. Polmear I.J. Light metals: from traditional alloys to nanocrystals. 4rd ed. Oxford: Elsevier/Butterworth-Heinemann, 2006.
  2. McDowell D.L. // Int. J. Plast. 2010. V. 26. P. 1280.
  3. Ковалевская Т.А., Данейко О.И. // Изв. РАН. Сер. физ. 2021. Т. 85. № 7. С. 1002; Kovalevskaya T.A., Daneyko O.I. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 7. P. 776.
  4. Варюхин В.Н., Малашенко В.В. // Изв. РАН. Сер. физ. 2018. Т. 82. № 9. С. 1213; Varyukhin V.N., Malashenko V.V. // Bull. Russ. Acad. Sci. Phys. 2018. V. 82. No. 9. P. 1101.
  5. Porter D.A., Easterling K.E., Sherif M.Y. Phase transformations in metals and alloys. N.Y.: CRC Press, 2014.
  6. Konno T.J., Hiraga K., Kawasaki M. // Scripta. Mater. 2001. V. 44. No. 8–9. P. 2303.
  7. Gao L., Li K., Ni S. et al. // J. Mater. Sci. Technol. 2021. V. 61. P. 25.
  8. da Costa Teixeira J., Cram D.G., Bourgeois L. et al. // Acta Mater. 2008. V. 56. No. 20. P. 6109.
  9. Chen Y., Zhang Z., Chen Z. et al. // Acta Mater. 2017. V. 125. P. 340.
  10. Ma Z., Zhan L., Liu C. et al. // Int. J. Plast. 2018. V. 110. P. 183.
  11. Liu H., Papadimitriou I., Lin F.X., Lorca J.L. et al. // Acta Mater. 2019. V. 167. P. 121.
  12. Zhou L., Wu C.L., Xie P. et al. // J. Mater. Sci. Technol. 2021. V. 75. P. 126.
  13. Bourgeois L., Medhekar N.V., Smith A.E. et al. // Phys. Rev. Lett. 2013. V. 111. Art. No. 069901.
  14. Liu C., Ma Z., Ma P. et al. // Mater. Sci. Eng. A. 2018. V. 733. P. 28.
  15. Krasnikov V.S., Mayer A.E., Pogorelko V.V. et al. // Int. J. Plast. 2020. V. 125. P. 169.
  16. Krasnikov V.S., Mayer A.E., Pogorelko V.V. // Int. J. Plast. 2020. V. 128. Art. No. 102672.
  17. Fomin E.V., Mayer A.E., Krasnikov V.S. // Int. J. Plast. 2021. V. 146. Art. No. 103095.
  18. Mahata A., Zaeem M.A. // J. Cryst. Growth. 2019. V. 527. Art. No. 125255.
  19. Haapalehto M., Pinomaa T., Wang L., Laukkanen A. // Comput. Mater. Sci. 2022. V. 209. Art. No. 111356.
  20. Hirel P. // Comput. Phys. Comm. 2015. V. 197. P. 212.
  21. Daw M.S., Foiles S.M., Baskes M.I. // Mater. Sci. Rep. 1993. V. 9. 251.
  22. Berendsen H.J.C., Postma J.P.M., van Gunsteren W.F. // J. Chem. Phys. 1984. V. 81. Art. No. 8.
  23. Plimpton S. // J. Comp. Phys. 1995. V. 117. P. 1.
  24. Apostol F., Mishin Y. // Phys. Rev. B. 2011. V. 83. Art. No. 054116.
  25. Stukowski A. // Mater. Sci. Eng. 2010. V. 18. Art. No. 015012.
  26. Krasnikov V.S., Mayer A.E. // Int. J. Plast. 2019. V. 119. P. 21.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (1MB)
3.

Жүктеу (517KB)
4.

Жүктеу (1MB)
5.

Жүктеу (531KB)

© П.А. Безбородова, В.С. Красников, М.Р. Газизов, А.Е. Майер, В.В. Погорелко, 2023