Measurement of the electron concentration in the vicinity of a strong shock wave

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A series of probe measurements to determine the electron concentration in a gas ahead of a strong shock wave front was carried out using a double-diaphragm shock tube DDST-M of the Institute of Mechanics, Moscow State University. At the same time, the light flux from the region of the shock-heated gas was recorded, which made it possible to calculate the electron concentration behind the shock wave using the spectroscopic method. The experiments were carried out in air, oxygen, and nitrogen at shock wave velocities from 8.3 to 11.3 km/s and an initial pressure of 0.25 Torr in the low-pressure chamber. The dependences of the electron concentration on the shock wave velocity and the distance from the observation point to the shock wave are obtained. Spectroscopic measurements made it possible to determine the dependence of the electron concentration on the composition of the gaseous medium. The obtained data are compared with the experimental data of other authors.

全文:

受限制的访问

作者简介

P. Kozlov

Institute of Mechanics, Lomonosov Moscow State University

Email: vyl69@mail.ru
俄罗斯联邦, Moscow

G. Gerasimov

Institute of Mechanics, Lomonosov Moscow State University

Email: vyl69@mail.ru
俄罗斯联邦, Moscow

V. Levashov

Institute of Mechanics, Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: vyl69@mail.ru
俄罗斯联邦, Moscow

N. Bykova

Institute of Mechanics, Lomonosov Moscow State University

Email: vyl69@mail.ru
俄罗斯联邦, Moscow

I. Zabelinsky

Institute of Mechanics, Lomonosov Moscow State University

Email: vyl69@mail.ru
俄罗斯联邦, Moscow

M. Kotov

Ishlinsky Institute for Problems in Mechanics, RAS

Email: vyl69@mail.ru
俄罗斯联邦, Moscow

参考

  1. Surzhikov S.T. // Rus. J. Phys. Chem. B 2010. V. 4. P. 613.
  2. Bykova N.G., Gochelashvily K.S., Karfidov D.M. et al. // Appl. Optics. 2017. V. 56. P. 2597.
  3. Golubkov G.V., Manzhelii M.I., Berlin A.A. et al. // Rus. J. Phys. Chem. 2021. V. 15. P. 362.
  4. Golubkov G.V., Berlin A.A., Dyakov Y.A. et al. // Rus. J. Phys. Chem. B 2023. V. 17. P. 1216.
  5. Stupochenko Y.V., Losev S.A., Osipov A.I. Relaxation in Shock Waves. Springer, New York, 1967).
  6. Lochte-Holtgreven W. Plasma Diagnostics. Willey, New York, 1968.
  7. Zel’dovich Y.B., Raizer Y.P. Physics of Shock Waves and High Temperature Hydrodynamic Phenomena, 3rd ed. Dover Publ., New York, 2002.
  8. Alekseev B.V., Kotelnikov V.A. Probe method for plasma diagnostics. Energoatomizdat, Moscow, 1988.
  9. Demidov V.I., Kolokolov N.B., Kudryavtsev A.A. Probe methods for studying low-temperature plasma. Energoatomizdat, Moscow, 1996.
  10. Gorelov V.A., Kildiushova L.A., Chernyshov V.M. // TsAGI Sci. 1977. V. 8. № 6. P. 49.
  11. Fujita K., Sato S., Abe T., Matsuda A. AIAA Paper. 2018. No. 2002-2765.
  12. Nomura S., Lemal A., Kawakami T., Fujita K. AIAA Paper. 2018. No. 2018-0741.
  13. Golant V.E. Microwave methods for plasma research. Nauka: Moscow, 1968.
  14. Vlasov P.A., Karasevich Yu.K., Pankrat’eva I.L., Polyansky V.A. // Phys.-Chem. Kinet. Gaz. Dynam. 2008. V. 6. № 1. P. 1.
  15. Gorelov V.A., Kireev A.Yu. // Phys.-Chem. Kinet. Gaz. Dynam. 2014. V. 15. № 1. P. 1.
  16. Cruden B.A. // J. Thermophys. Heat Transf. 2012. V. 26. P. 222.
  17. Kotov M.A., Kozlov P.V., Osipenko K.Yu., Gerasimov G.Ya., Levashov V.Yu., Bykova N.G., Zabelinsky I.E. // Rus. J. Phys. Chem. 2023. V. 17. P. 977.
  18. Zabelinsky I.E., Kozlov P.V., Akimov Yu.V. et al. // Rus. J. Phys. Chem. 2021. V. 15. P. 977.
  19. Hassouba M.A., Galaly A.R., Rashed U.M. // Plasma Phys. Rep. 2013. V. 39. P. 255.
  20. Nomura S., Kawakami T., Fujita K. // J. Thermophys. Heat Transf. 2021. V. 35. P. 518.
  21. Kozlov P.V., Surzhikov S.T. AIAA Paper. 2017. No. 2017-0157.
  22. Heays A.N., Bosman A.D., van Dishoeck E.F. // A&A. 2017. V. 602. P. A105.
  23. Katsurayama H., Matsuda A., Abe T. AIAA Paper. 2007. No. 2007-4552.
  24. Surzhikov S.T. // Phys.-Chem. Kinet. Gaz. Dynam. 2022. V. 24. № 4. P. 1.
  25. Lemal A., Nomura S., Fujita K. Hypersonic Meteoroid Entry Physics. IOP Publ. 2019. P. 9–1.
  26. Omura M., Presley L.L. // AIAA J. 1969. V. 7. P. 2363.
  27. Gorelov V.A., Kildushova L.A., Kireev A.Yu. AIAA Paper. 1994. No. 1994-2051.
  28. Gigosos M.A., Gonzalez M.A., Cardenoso V. // Spectrochim. Acta Part B: Atom. Spectrosc. 2003. V. 58. P. 1489.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Evolution of the voltage on the probe Z in front of the shock wave moving in the air with a speed of VSW = 10.4 km/s at p₀ = 0.25 Torr. The inset shows the interaction diagram of the shock wave with the probe.

下载 (61KB)
3. Fig. 2. Dependence of the electron temperature Tₑ on the distance to the shock wave in air at p₀ = 0.25 Torr and VSW = 9.2 (1), 10.7 (2), 11.5 (3) and 12.3 km/s (4).

下载 (69KB)
4. Fig. 3. Comparison of the calculated electron temperature Tₑ before the shock wave in air at p₀ = 0.25 Torr and VSW = 11.5 (1) and 12.3 km/s (2) with the measurement data from [18] at p₀ = 0.23 Torr and VSW = 12.3 km/s (dots).

下载 (57KB)
5. Fig. 4. Measured concentrations nₑ in front of a shock wave propagating through the air at p₀ = 0.25 Torr and VSW = 10.4 km/s (1) and their comparison with microwave measurement data from [24] at p₀ = 0.2 Torr and VSW = 9.8 (2) and 10.8 km/s (3).

下载 (64KB)
6. Fig. 5. Measured concentrations nₑ in front of a shock wave propagating through the air at p₀ = 0.25 Torr and VSW = 10.4 km/s (1) and their comparison with the data of measurements by a triple probe from [25] at p₀ = 0.2 Torr and VSW = 9.5 (2) and 11.3 km/s (3).

下载 (66KB)
7. Fig. 6. Time-integrated intensities of the Hᵦ line emission in oxygen (1) and nitrogen (2) at p₀ = 0.25 Torr and VSW = 10 km/s.

下载 (74KB)
8. Fig. 7. Electron concentrations nₑ measured using the spectroscopic method in shock-heated air (1), oxygen (2) and nitrogen (3), as well as data from work [14] for air (4). The line is the results of the equilibrium calculation [14].

下载 (91KB)

版权所有 © Russian Academy of Sciences, 2024