Piezoelectric properties of composite polymer materials based on PVDF

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The paper examines composite polymer materials based on a PVDF matrix, which differ in filler material. Polyvinylidene fluoride (PVDF) is an organic polymer material with a significant piezoelectric effect. Currently, due to its physical and chemical properties, it is actively used for the development and creation of acousto-electronic devices, including sensors for various purposes, as well as in flexible electronics devices. Using Raman spectroscopy and dielectric spectroscopy methods, it is shown that the electrophysical properties of a composite material based on PVDF are determined by the formulation and manufacturing conditions. The additional polarization of the PVDF composite with various fillers in an external electric field directly during the creation of samples will significantly improve the electrophysical properties (coefficient of electromechanical coupling, dielectric constant). At the same time, the use of solid-state fillers significantly improves the mechanical and operational properties of such composites.

Sobre autores

E. Golovanov

Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences

Email: kasper_96.96@mail.ru
Moscow, Russia

A. Fionov

Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences

Email: kasper_96.96@mail.ru
Moscow, Russia

V. Kashin

Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences

Email: kasper_96.96@mail.ru
Moscow, Russia

V. Kolesov

Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences

Autor responsável pela correspondência
Email: kasper_96.96@mail.ru
Moscow, Russia

Bibliografia

  1. Zhou L., Luo J., Li Q. et. al. // J. Funct. Mater. 2018. V. 49. № 12. P. 12079. https://doi.org/10.3969/j.issn.1001-9731.2018.12.011
  2. Aghayari S. // Heliyon. 2022. V. 8. № 11. P. e11620. https://doi.org/10.1016/j.heliyon.2022.e11620
  3. Fotouhi S., Akrami R., Ferreira-Green K. et al. // IOP Conf. Ser.: Mater. Sci. Eng. 2019. V. 659. P. 012085. https://10.1088/1757-899X/659/1/012085
  4. Абдрашитов Э. Ф, Крицкая Д. А., Бокун В. Ч. и др. // Хим. физика. 2015. Т. 34. № 4. С. 87. https://doi.org/10.7868/S0207401X15040020
  5. Anjana J., Prashanth K.J., Sharma A.K., Arpit J., Rashmi P.N. // Polym. Eng. Sci. 2015. V. 55. Ussue 7. P. 2589. https://doi.org/10.1002/pen.24088
  6. Bužarovska A., Kubin M., Makreski P. et al. // J. Polym. Res. 2022. V. 29. P. 272. https://doi.org/10.1007/s10965-022-03133-z
  7. Guo S., Duan X., Xie M. et al. // Micromachines. 2020. V. 11. P. 1076. https://doi.org/10.3390/mi11121076
  8. Голованов Е.В., Кашин В.В., Горбачев И.А. и др. // РЭНСИТ: Радиоэлектроника. Наносистемы. Информационные технологии. 2024. Т. 16. № 7. С. 829. https://doi.org/10.17725/rensit.2024.16.829
  9. Фионов A.С., Колесов В.В., Фионова В.А. и др. // Хим. физика. 2023. Т. 42. № 11. С. 79. https://doi.org/10.31857/S0207401X2311002X

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025