Magnetic Resonance Imaging Study of Water Absorption of Polymer Composite Materials Subjected to Mechanical and Temperature Impact

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The results of a study of water absorption processes by samples of polymer composite materials
(PCMs) based on fiberglass, subjected to low-speed impact with controlled impact energy and alternating
temperature cycling are presented. Using magnetic resonance imaging (MRI), the distribution of absorbed
water in the fiberglass structure is visualized and the dynamics of its accumulation in various areas of the sample
are studied. It is found that mechanical impact leads to a nonuniform distribution of the absorbed water
in the samples and a significant accumulation of free water in the areas of destruction and adjacent layers in
the event of a violation of the integrity of the outer layer of the material. It is shown that cyclic alternating
temperature effects do not lead to a noticeable change in the water absorption processes and are comparable
in effect to mechanical nondestructive effects. The results obtained using MRI are in close agreement with
the data of traditional weight measurements, which shows the effectiveness of the method in diagnosing
defects and mechanical damage to PCMs exposed to the aquatic environment.

Sobre autores

E. Morozov

Kirensky Institute of Physics, Siberian Branch, Russian Academy of Sciences; Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences

Email: morozovev@iph.krasn.ru
Krasnoyarsk, Russia; Krasnoyarsk, Russia

A. Il’ichev

Kirensky Institute of Physics, Siberian Branch, Russian Academy of Sciences

Email: morozovev@iph.krasn.ru
Krasnoyarsk, Russia

V. Bouznik

Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences

Autor responsável pela correspondência
Email: morozovev@iph.krasn.ru
Krasnoyarsk, Russia

Bibliografia

  1. Кербер М.Л. Полимерные композиционные материалы. Структура. Свойства. Технологии. СПб.: Профессия, 2008.
  2. Анпилова А.Ю., Масталыгина Е.Е., Храмеева Н.П. и др. // Хим. физика. 2020. Т. 39. № 1. С. 66; https://doi.org/10.31857/S0207401X20010021
  3. Клименко И.В. // Хим. физика. 2022. Т. 41. № 2. С. 70; https://doi.org/10.31857/S0207401X22020054
  4. Корнеева Н.В., Кудинов В.В., Крылов И.К. и др. // Хим. физика. 2019. Т. 38. № 9. С. 67; https://doi.org/10.1134/S0207401X19090036
  5. Николаев Е.В., Павлов М.Р., Лаптев А.Б. и др. // Тр. ВИАМ. 2017. Т. 56. № 8. С. 64; https://doi.org/10.18577/2307-6046-2017-0-8-7-7
  6. Wang Y. Principles of Magnetic Resonance Imaging: Physics Concepts, Pulse Sequences, & Biomedical Applications. CreateSpace Independent Publishing Platform, 2012.
  7. Koptyug I.V. // Progr. Nucl. Magn. Reson. Spectroscopy. 2012. V. 65. P. 1.
  8. Blumich B. NMR Imaging of Materials. Oxford: Clarendon Press, 2003.
  9. Bouznik V.M., Morozov E.V., Avilova I.A. et al. // Appl. Magn. Reson. 2016. V. 47. №. 3. P. 321.
  10. Morozov E.V., Novikov M.M., Bouznik V.M. // Addit. Manufact. 2016. V. 12. P. 16.
  11. Morozov E., Novikov M., Bouznik V. et al. // Rapid Prototyp. J. 2019. V. 25. №. 6. P. 1007.
  12. Соколов И.И., Раскутин А.Е. // Тр. ВИАМ. 2013. Т. 9. № 4. С. 4.
  13. Startsev V.O., Il’ichev A.V. // Mech. Compos. Mat. 2018. V. 54. №. 2. P. 145.
  14. Berketis K., Tzetzis D. // J. Mater. Sci. 2010. V. 45. № 20. P. 5611; https://doi.org/10.1007/s10853-010-4626-x
  15. Старцев В.О., Панин С.В., Старцев О.В. // Механика композит. материалов. 2015. Т. 51. № 6. С. 1081.
  16. Старцев В.О., Махоньков А.Ю., Котова Е.А. // Авиац. матер. и технологии. 2015. № S1. С. 49; https://doi.org/10.18577/2071-9140-2015-0-S1-49-55
  17. Старцев О.В., Прокопенко К.О., Литвинов А.А. и др. // Клеи. Герметики. Технологии. 2009. № 8. С. 18.
  18. Каблов Е.Н., Старцев О.В. // Авиац. матер. и технологии. 2015. Т. 4. № 37. С. 38; https://doi.org/10.18577/2071-9140-2015-0-4-38-52

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (1MB)
3.

Baixar (205KB)
4.

Baixar (72KB)
5.

Baixar (686KB)
6.

Baixar (140KB)
7.

Baixar (70KB)
8.

Baixar (826KB)
9.

Baixar (130KB)

Declaração de direitos autorais © Е.В. Морозов, А.В. Ильичев, В.М. Бузник, 2023