Межлинейные различия в когнитивных способностях лабораторной мыши (элементарная логическая задача, внимание, память)
- Авторы: Перепелкина О.В.1, Полетаева И.И.1
-
Учреждения:
- Московский государственный университет им. M.В. Ломоносова
- Выпуск: Том 74, № 4 (2024)
- Страницы: 486-495
- Раздел: ФИЗИОЛОГИЧЕСКИЕ МЕХАНИЗМЫ ПОВЕДЕНИЯ ЖИВОТНЫХ: ВОСПРИЯТИЕ ВНЕШНИХ СТИМУЛОВ, ДВИГАТЕЛЬНАЯ АКТИВНОСТЬ, ОБУЧЕНИЕ И ПАМЯТЬ
- URL: https://cardiosomatics.orscience.ru/0044-4677/article/view/652084
- DOI: https://doi.org/10.31857/S0044467724040093
- ID: 652084
Цитировать
Аннотация
У мышей двух линий, селектированных на успешное решение (линия «плюс») и на «не решение» (линия «минус») теста на поиск входа в укрытие (puzzle-box), адресованного выявлению способности к пониманию правила «неисчезаемости» (по Пиаже), оценивали уровень внимания к движущимся предметам, неофагию и проявление краткосрочной памяти. В наиболее трудном варианте теста на «неисчезаемость», когда лаз, через который можно было спрятаться в темноту из ярко освещенной камеры, был закрыт «пробкой», мыши линии «плюс» обнаруживали (уже в нескольких поколениях) достоверное отличие по этому признаку от мышей линии «минус». В настоящей статье приводятся данные, показывающие превосходство мышей линии «плюс» в проявлении внимания к новым движущимся предметам в специальном тесте, а также в их «позитивной» реакции, по сравнению с мышами «минус», на новую пищу в новой обстановке (неофагия). Мыши линии «плюс» также достоверно отличались от мышей линии «минус» по проявлению краткосрочной рабочей памяти. Время решения второго предъявления теста с «пробкой» по сравнению с латентностью его первого предъявления, было короче у большей доли животных линии «плюс» по сравнению с таковой линии «минус». Предполагается, что межлинейные различия, обнаруженные в исследовании, следует отнести к различиям в экспрессии «исполнительных функций» у этих животных.
Ключевые слова
Полный текст

Об авторах
О. В. Перепелкина
Московский государственный университет им. M.В. Ломоносова
Email: ingapoletaeva@mail.ru
Россия, Москва
И. И. Полетаева
Московский государственный университет им. M.В. Ломоносова
Автор, ответственный за переписку.
Email: ingapoletaeva@mail.ru
Россия, Москва
Список литературы
- Крушинский Л.В. Элементарная рассудочная деятельность. Изд-во URSS, 2014.
- Перепелкина О.В., Маркина Н.В., Голибродо В.А., Лильп И Г., Полетаева И.И. Селекция мышей на высокий уровень способности к экстраполяции при низком уровне тревожности. Журн. высш. нервн. деят. им. И.П.Павлова. 2011. 61 (6): 13–23.
- Перепелкина О.В., Тарасова А.Ю., Голибродо В.А., Лильп И.Г., Полетаева И.И. Поведение мышей, селектированных на высокие значения когнитивного признака. Журн. высш. нервн. деят. им. И.П.Павлова. 2018. 68 (4): 434–447.
- Перепелкина О.В., Лильп И.Г., Маркина Н.В., Голибродо В.А., Полетаева И.И. Первый опыт селекции лабораторных мышей на высокую способность к экстраполяции. В сб. Формирование поведения животных в норме и патологии. К 100-летию со дня рождения Л.В. Крушинского. Под ред. И.И. Полетаевой, З.А. Зориной. М.: Языки славянских культур, 2013. 162–188.
- Полетаева И.И., Романова Л.Г. Хромосомные мутации и способность лабораторных мышей к экстраполяции направления движения стимула. В сб. Формирование поведения животных в норме и патологии. К 100-летию со дня рождения Л.В. Крушинского. Под ред. И.И. Полетаевой, З.А. Зориной. М.: Языки славянских культур, 2013. 133–150.
- Ben Abdallah N.M.-B. Т., Fuss J., M., Galsworthy M.J., Bobsin K., Colacicco G., Deacon R.M.J., Riva M.A., Kellendonk C., Sprengel R., Lipp H-P., Gass P. The puzzle box as a simple and efficient behavioral test for exploring impairments of general cognition and executive functions in mouse models of schizophrenia. Exp Neurol. 2011. 227 (1): 42–52. https://doi.org/10.1016/j.expneurol.2010.09.008
- Brigman J.L., Powell E.M., Mittleman G., Young J W. Examining the genetic and neural components of cognitive flexibility using mice. Physiol. Behav. 2012. 107 (5): 666–669. https://doi.org/10.1016/j.physbeh.2011.12.024 (5)
- Carli M., Invernizzi R.W. Serotoninergic and dopaminergic modulation of cortico-striatal circuit in executive and attention deficits induced by NMDA receptor hypofunction in the 5-choice serial reaction time task. Front Neural Circuits. 2014; 8: 58. eCollection 2014
- https://doi.org/10.3389/fncir.2014.00058
- Cascella M., Al Khalili Y. Short-term memory impairment. 2023. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan. PMID: 31424720
- Cooper R.P. Cognitive Control: Componential or Emergent? Top Cogn Sci. 2010.;2 (4): 598–613. https://doi.org/10.1111/j.1756-8765.2010.01110.x
- Ene H.M., Kara N.Z., Barak N., Ben-Mordechai T.R., Einat H. Effects of repeated asenapine in a battery of tests for anxiety-like behaviours in mice. Acta Neuropsychiatr 2016 Apr. 28 (2): 85–91. https://doi.org/10.1017/neu.2015.53
- Galsworthy M.J., Paya-Cano J.L., Monleon S., Plomin R. Evidence for general cognitive ability (g) in heterogeneous stock mice and an analysis of potential confounds. Genes Brain Behav. 2002. 1 (2): 88–95. https://doi.org/10.1034/j.1601-183x.2002.10204.x
- Georgiou P., Panos Zanos P., Mou T-Ch.M., An X., Gerhard D.M., Dilyan I., Dryanovski D.J., Potter L.E., Highland J.N., Jenne C.E., Stewart B.W., Pultorak K.J., Yuan P., Powels C.F., Lovett J., Pereira E.F.R., Clark S.M., Tonelli L.H., Moaddel R., Zarate C.A.Jr., Duman R.S., Thompson S.M., Gould T.D. Experimenters’ sex modulates mouse behaviors and neural responses to ketamine via corticotropin releasing factor. Nat Neurosci 2022 Sep; 25 (9): 1191–1200. https://doi.org/10.1038/s41593-022-01146-x
- Giménez-Llort L., Schiffmann S.N., Shmidt T., Canela L., Camón L., Wassholm M., Canals M., Terasmaa A., Fernández-Teruel A., Tobeña A., Popova E, Ferré S., Agnati L., Ciruela F., Martínez E., Scheel-Kruger J. L.C., Franco R., Fuxe K., Bader M. Working memory deficits in transgenic rats overexpressing human adenosine A2A receptors in the brain. Neurobiol. Learn. Mem. 2007. 87 (1): 42–56. https://doi.org/10.1016/j.nlm.2006.05.004
- Hamilton D.A., Brigman J.L. Behavioral flexibility in rats and mice: contributions of distinct frontocortical regions. Genes Brain Behav .2015. 14 (1): 4–21. doi: 10.1111/gbb.12191
- Hen R., Dulawa S.C. Recent advances in animal models of chronic antidepressant effects: the novelty-induced hypophagia test. Neurosci Biobehav Rev. 2005. 29 (4-5): 771–783. https://doi.org/10.1016/j.neubiorev.2005.03.017
- Holmes A., Wellman C L. Stress-induced prefrontal reorganization and executive dysfunction in rodents. Neurosci Biobehav Rev. 2009. 33 (6): 773–783. https://doi.org/10.1016/j.neubiorev.2008.11.005
- Jian-Min C., Zhi-Yuan W., Ke L, Cheng Z., Shi-Xuan W., Yi-Wei C., Guan-Yi L., Rui S., Xiao-Mei Z., Jin L., Ning W. Assessment of lisdexamfetamine on executive function in rats: A translational cognitive research. Exp Neurol. 2024. 374:114718. Epub 2024 Feb 8. PMID: 38336285. https://doi.org/10.1016/j.expneurol.2024.114718
- Nilsson S.R.O., Alsiöa J., Somerville E.M., Clifton P.G. The rat’s not for turning: Dissociating the psychological components of cognitive inflexibility Neurosci. Biobehav. Rev, 2015. V. 56. P 1–14.
- Perepelkina O.V., Poletaeva I.I. Selection of Mice for Object Permanence Cognitive Task Solution. Neurol Int. 2022. 14(3): 696–706. PMID: 36135993. https://doi.org/10.3390/neurolint14030058
- Perepelkina O.V., Poletaeva I.I. Cognitive Test Solution in Mice with Different Brain Weights after Atomoxetine Neurol Int. 2023 May 15; 15 (2): 649–660. https://doi.org/10.3390/neurolint15020041
- Reimer A. E., de Oliveira A.R, Brandão M. L. Glutamatergic mechanisms of the dorsal periaqueductal gray matter modulate the expression of conditioned freezing and fear-potentiated startle. Neurosci. 2012. 219: 72–81. https://doi.org/10.1016/j.neuroscience.2012.06.005
- Rozeske R.R, Jercog D., Karalis N., Chaudun F., Khoder S., Delphine G., Winke N., Herry C. Prefrontal-periaqueductal gray-projecting neurons mediate context fear discrimination. Neuron, 2018. 97 (4): 898–910. doi: 10.1016/j.neuron.2017.12.044
- Sable H.J.K., Lester D.B., Potter J.L., Nolen H.G., Cruthird D.M., Estes L.M., Johnson A.D., Regan S.L., Williams M.T., Vorhees C.V. An assessment of executive function in two different rat models of attention-deficit hyperactivity disorder: Spontaneously hypertensive versus Lphn3 knockout rats. Genes Brain Behav. 2021. 20(8): e12767. Epub 2021 Sep 8. PMID: 34427038. https://doi.org/10.1111/gbb.12767
- Talpos J., Shoaib M. Executive function. Handb Exp Pharmacol. 2015. 228: 191–213. https://doi.org/10.1007/978-3-319-16522-6_6
- Yegla B., Foster T.C., Kumar A. Behavior model for assessing decline in executive function during aging and neurodegenerative disease. Methods Mol. Biol. 2011. 2019: 441–449. https://doi.org/10.1007/978-1-4939-9554-7
- Zhong P., Cao Q., Yan Z. Selective impairment of circuits between prefrontal cortex glutamatergic neurons and basal forebrain cholinergic neurons in a tauopathy mouse model. Cereb Cortex. 2022. 32 (24): 5569–5579. doi: 10.1093/cercor/bhac036.PMID: 35235649.
- Zucca P., Milos N., Vallortigara G. Piagetian object permanence and its development in Eurasian jays (Garrulus glandarius). Anim. Cogn. 2007. 10 (2): 243–258. https://doi.org/10.1007/s10071-006-0063-2
Дополнительные файлы
