Роль микроцефалина в нейрогенезе и эволюции головного мозга человека

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Первичная микроцефалия представляет собой тяжелую патологию развития головного мозга человека, основным фенотипическим проявлением которой является уменьшение его размера и умственная отсталость разной степени тяжести. Микроцефалин 1 (MCPH1) – первый ген, для которого была установлена связь с первичной микроцефалией. Кодируемый им белок микроцефалин (MCPH1) обладает широким спектром функций, нарушения которых могут негативно влиять на нейрогенез. Настоящий обзор посвящен описанию клинических случаев MCPH1-опосредованной микроцефалии, а также животных моделей с мутациями в различных доменах MCPH1. Отдельное внимание уделено роли MCPH1 в эволюции мозга человека.

Полный текст

Доступ закрыт

Об авторах

А. М. Юнусова

Федеральный исследовательский центр, Институт цитологии и генетики Сибирского отделения РАН

Автор, ответственный за переписку.
Email: anastasiajunusova@gmail.com
Россия, Новосибирск

Т. А. Шнайдер

Федеральный исследовательский центр, Институт цитологии и генетики Сибирского отделения РАН

Email: anastasiajunusova@gmail.com
Россия, Новосибирск

Список литературы

  1. Ade C., Roy-Engel A.M., Deininger P.L. 2013. Alu elements: an intrinsic source of human genome instability. Curr. Opin. Virol. V. 3. P. 639.
  2. Al Eissa M.M., Sharp S.I., O’Brien N.L., Fiorentino A., Bass N.J., Curtis D., McQuillin A. 2019. Genetic association and functional characterization of MCPH1 gene variation in bipolar disorder and schizophrenia. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. V. 180. P. 258.
  3. Alderton G.K., Galbiati L., Griffith E., Surinya K.H., Neitzel H., Jackson A.P., Jeggo P.A., O’Driscoll M. 2006. Regulation of mitotic entry by microcephalin and its overlap with ATR signalling. Nat. Cell Biol. V. 8. P. 725.
  4. Arroyo M., Kuriyama R., Trimborn M., Keifenheim D., Cañuelo A., Sánchez A., Clarke D.J., Marchal J.A. 2017. MCPH1, mutated in primary microcephaly, is required for efficient chromosome alignment during mitosis. Sci. Rep. V. 7. P. 13019.
  5. Atwood L.D., Wolf P.A., Heard-Costa N.L., Massaro J.M., Beiser A., D’Agostino R.B., DeCarli C. 2004. Genetic variation in white matter hyperintensity volume in the framingham study. Stroke. V. 35. P. 1609.
  6. Bates T.C., Luciano M., Lind P.A., Wright M.J., Montgomery G.W., Martin N.G. 2008. Recently-derived variants of brain-size genes ASPM, MCPH1, CDK5RAP and BRCA1 not associated with general cognition, reading or language. Intelligence. V. 36. P. 689.
  7. Bettencourt-Dias M., Hildebrandt F., Pellman D., Woods G., Godinho S.A. 2011. Centrosomes and cilia in human disease. Trends Genet. V. 27. P. 307.
  8. Bhattacharya N., Mukherjee N., Singh R.K., Sinha S., Alam N., Roy A., Roychoudhury S., Panda C.K. 2013. Frequent alterations of MCPH1 and ATM are associated with primary breast carcinoma: clinical and prognostic implications. Ann. Surg. Oncol. V. 20. P. 424.
  9. Bond J., Woods C.G. Cytoskeletal genes regulating brain size. 2006. Curr. Opin. Cell Biol. V. 18. P. 95.
  10. Britten R.J. 2010. Transposable element insertions have strongly affected human evolution. Proc. Natl. Acad. Sci. V. 107. P. 19945.
  11. Brown J.A.L., Bourke E., Liptrot C., Dockery P., Morrison C.G. 2010. MCPH1/BRIT1 limits ionizing radiation-induced centrosome amplification. Oncogene. V. 29. P. 5537.
  12. Brüning-Richardson A., Bond J., Alsiary R., Richardson J., Cairns D.A., McCormack L., Hutson R., Burns P., Wilkinson N., Hall G.D., Morrison E.E., Bell S.M. 2011. ASPM and microcephalin expression in epithelial ovarian cancer correlates with tumour grade and survival. Br. J. Cancer. V. 104. P. 1602.
  13. Caraffi S.G., Pollazzon M., Farooq M., Fatima A., Larsen L.A., Zuntini R., Napoli M., Garavelli L. 2022. MCPH1: A novel case report and a review of the literature. Genes (Basel). V. 13. P. 634.
  14. Casas Gimeno G., Paridaen J.T.M.L. 2022. The symmetry of neural stem cell and progenitor divisions in the vertebrate brain. Front. Cell Dev. Biol. V. 10. P. 885269.
  15. Chang H.-Y., Lee C.-Y., Lu C.-H., Lee W., Yang H.-L., Yeh H.-Y., Li H.-W., Chi P. 2020. Microcephaly family protein MCPH1 stabilizes RAD51 filaments. Nucleic Acids Res. V. 48. P. 9135.
  16. Chen J., Ingham N., Clare S., Raisen C., Vancollie V.E., Ismail O., McIntyre R.E., Tsang S.H., Mahajan V.B., Dougan G., Adams D.J., White J.K., Steel K.P. 2018. Mcph1-deficient mice reveal a role for MCPH1 in otitis media. PLoS One. V. 8. P.: e58156. https://doi.org/10.1371/journal.pone.0058156.
  17. Cicconi A., Rai R., Xiong X., Broton C., Al-Hiyasat A., Hu C., Dong S., Sun W., Garbarino J., Bindra R.S., Schildkraut C., Chen Y., Chang S. 2020. Microcephalin 1/BRIT1-TRF2 interaction promotes telomere replication and repair, linking telomere dysfunction to primary microcephaly. Nat. Commun. V. 11. P. 5861.
  18. Colombo S.L., Palacios-Callender M., Frakich N., Carcamo S., Kovacs I., Tudzarova S., Moncada S. 2011. Molecular basis for the differential use of glucose and glutamine in cell proliferation as revealed by synchronized HeLa cells. Proc. Natl. Acad. Sci. V. 108. P. 21069.
  19. Cordaux R., Batzer M.A. 2009. The impact of retrotransposons on human genome evolution. Nat. Rev. Genet. V. 10. P. 691.
  20. Cugola F.R., Fernandes I.R., Russo F.B., Freitas B.C., Dias J.L.M., Guimarães K.P., Benazzato C., Almeida N., Pignatari G.C., Romero S., Polonio C.M., Cunha I., Freitas C.L., Brandão W.N., Rossato C. et al. 2016. The Brazilian Zika virus strain causes birth defects in experimental models. Nature. V. 534. P. 267.
  21. Posthuma D., De Geus E.J.C., Neale M. C., Hulshoff Pol H. E., Baare W.E.C., Kahn R.S., Boomsma D. 2000. Multivariate genetic analysis of brain structure in an extended twin design. Behav. Genet. V. 30. P. 311.
  22. Dobson-Stone C., Gatt J.M., Kuan S.A., Grieve S.M., Gordon E., Williams L.M., Schofield P.R. 2007. Investigation of MCPH1 G37995C and ASPM A44871G polymorphisms and brain size in a healthy cohort. Neuroimage. V. 37. P. 394.
  23. Dorus S., Vallender E.J., Evans P.D., Anderson J.R., Gilbert S.L., Mahowald M., Wyckoff G.J., Malcom C.M., Lahn B.T. 2004. Accelerated evolution of nervous system genes in the origin of Homo sapiens. Cell. V. 119. P. 1027.
  24. Duerinckx S., Verhelst H., Perazzolo C., David P., Desmyter L., Pirson I., Abramowicz M. 2017. Severe congenital microcephaly with AP4M1 mutation, a case report. BMC Med. Genet. V. 18. P. 48.
  25. Erwin J.A., Marchetto M.C., Gage F.H. 2014. Mobile DNA elements in the generation of diversity and complexity in the brain. Nat. Rev. Neurosci. V. 15. P. 497.
  26. Evans P.D. 2004. Reconstructing the evolutionary history of microcephalin, a gene controlling human brain size. Hum. Mol. Genet. V. 13. P. 1139.
  27. Evans P.D., Gilbert S.L., Mekel-Bobrov N., Vallender E.J., Anderson J.R., Vaez-Azizi L.M., Tishkoff S.A., Hudson R.R., Lahn B.T. 2005. Microcephalin, a gene regulating brain size, continues to evolve adaptively in humans. Science. V. 309. P. 1717.
  28. Evans P.D., Vallender E.J., Lahn B.T. 2006. Molecular evolution of the brain size regulator genes CDK5RAP2 and CENPJ. Gene. V. 375. P. 75.
  29. Fair S.R., Schwind W., Julian D.L., Biel A., Guo G., Rutherford R., Ramadesikan S., Westfall J., Miller K.E., Kararoudi M.N., Hickey S.E., Mosher T.M., McBride K.L., Neinast R., Fitch J. et al. 2023. Cerebral organoids containing an AUTS2 missense variant model microcephaly. Brain. V. 146. P. 387.
  30. Florea L., Payer L., Antonescu C., Yang G., Burns K. 2021. Detection of Alu exonization events in human frontal cortex from RNA-Seq data. Front. Mol. Biosci. V. 8: 727537. https://doi.org/10.3389/fmolb.2021.727537
  31. Gabriel E., Wason A., Ramani A., Gooi L.M., Keller P., Pozniakovsky A., Poser I., Noack F., Telugu N.S., Calegari F., Šarić T., Hescheler J., Hyman A.A., Gottardo M., Callaini G. et al. 2016. CPAP promotes timely cilium disassembly to maintain neural progenitor pool. EMBO J. V. 35. P. 803.
  32. Garshasbi M., Motazacker M.M., Kahrizi K., Behjati F., Abedini S.S., Nieh S.E., Firouzabadi S.G., Becker C., Rüschendorf F., Nürnberg P., Tzschach A., Vazifehmand R., Erdogan F., Ullmann R., Lenzner S. et al. 2006. SNP array-based homozygosity mapping reveals MCPH1 deletion in family with autosomal recessive mental retardation and mild microcephaly. Hum. Genet. V. 118. P. 708.
  33. Gavvovidis I., Pöhlmann C., Marchal J.A., Stumm M., Yamashita D., Hirano T., Schindler D., Neitzel H., Trimborn M. 2010. MCPH1 patient cells exhibit delayed release from DNA damage-induced G2/M checkpoint arrest. Cell Cycle. V. 9. P. 4893.
  34. Gavvovidis I., Rost I., Trimborn M., Kaiser F.J., Purps J., Wiek C., Hanenberg H., Neitzel H., Schindler D. 2012. A Novel MCPH1 Isoform complements the defective chromosome condensation of human MCPH1-deficient cells. PLoS One. V. 7: e40387. https://doi.org/10.1371/journal.pone.0040387
  35. Ghafouri-Fard S., Fardaei M., Gholami M., Miryounesi M. 2015. A case report: Autosomal recessive microcephaly caused by a novel mutation in MCPH1 gene. Gene. V. 571. P. 149.
  36. Ghani-Kakhki M., Robinson P.N., Morlot S., Mitter D., Trimborn M., Albrecht B., Varon R., Sperling K., Neitzel H. 2012. Two missense mutations in the primary autosomal recessive microcephaly gene MCPH1 disrupt the function of the highly conserved N-Terminal BRCT domain of microcephalin. Mol. Syndromol. V. 3. P. 6.
  37. Giallongo C., Tibullo D., La Cava P., Branca A., Parrinello N., Spina P., Stagno F., Conticello C., Chiarenza A., Vigneri P., Palumbo G.A., Di Raimondo F. 2011. BRIT1/MCPH1 Expression in chronic myeloid leukemia and its regulation of the G2/M Checkpoint. Acta Haematol. V. 126. P. 205.
  38. Gilbert S.L., Dobyns W.B., Lahn B.T. 2005. Genetic links between brain development and brain evolution. Nat. Rev. Genet. V. 6. P. 581.
  39. Glancy M., Barnicoat A., Vijeratnam R., de Souza S., Gilmore J., Huang S., Maloney V.K., Thomas N.S., Bunyan D.J., Jackson A., Barber J.C.K. 2009. Transmitted duplication of 8p23.1–8p23.2 associated with speech delay, autism and learning difficulties. Eur. J. Hum. Genet. V. 17. P. 37.
  40. Glousker G., Touzot F., Revy P., Tzfati Y., Savage S.A. 2015. Unraveling the pathogenesis of Hoyeraal–Hreidarsson syndrome, a complex telomere biology disorder. Br. J. Haematol. V. 170. P. 457.
  41. Gressens P., Hill J.M., Paindaveine B., Gozes I., Fridkin M., Brenneman D.E. 1994. Severe microcephaly induced by blockade of vasoactive intestinal peptide function in the primitive neuroepithelium of the mouse. J. Clin. Invest. V. 94. P. 2020.
  42. Gressens P., Marret S., Martin J., Laquerrière A., Lombet A., Evrard P. 1998. Regulation of neuroprotective action of vasoactive intestinal peptide in the murine developing brain by protein kinase C and mitogen‐activated protein kinase cascades: in vivo and in vitro studies. J. Neurochem. V. 70. P. 2574.
  43. Gruber R., Zhou Z., Sukchev M., Joerss T., Frappart P.-O., Wang Z.-Q. 2011. MCPH1 regulates the neuroprogenitor division mode by coupling the centrosomal cycle with mitotic entry through the Chk1–Cdc25 pathway. Nat. Cell Biol. V. 13. P. 1325.
  44. Häsler J., Strub K. 2006. Alu elements as regulators of gene expression. Nucleic Acids Res. V. 34. P. 5491.
  45. Heimer G., Marek‐Yagel D., Eyal E., Barel O., Oz Levi D., Hoffmann C., Ruzzo E.K., Ganelin‐Cohen E., Lancet D., Pras E., Rechavi G., Nissenkorn A., Anikster Y., Goldstein D.B., Ben Zeev B. 2015. SLC1A4 mutations cause a novel disorder of intellectual disability, progressive microcephaly, spasticity and thin corpus callosum. Clin. Genet. V. 88. P. 327.
  46. Hemmat M., Rumple M.J., Mahon L.W., Morrow M., Zach T., Anguiano A., Elnaggar M.M., Wang B.T., Boyar F.Z. 2017. CMA analysis identifies homozygous deletion of MCPH1 in 2 brothers with primary Microcephaly-1. Mol. Cytogenet. V. 10. P. 33.
  47. Houlard M., Cutts E.E., Shamim M.S., Godwin J., Weisz D., Presser Aiden A., Lieberman Aiden E., Schermelleh L., Vannini A., Nasmyth K. 2021. MCPH1 inhibits Condensin II during interphase by regulating its SMC2-Kleisin interface. Elife. V. 10: e73348. https://doi.org/10.7554/eLife.73348
  48. Jackson A.P., Eastwood H., Bell S.M., Adu J., Toomes C., Carr I.M., Roberts E., Hampshire D.J., Crow Y.J., Mighell A.J., Karbani G., Jafri H., Rashid Y., Mueller R.F., Markham A.F. et al. 2002. Identification of microcephalin, a protein implicated in determining the size of the human brain. Am. J. Hum. Genet. V. 71. P. 136.
  49. Jackson A.P., McHale D.P., Campbell D.A., Jafri H., Rashid Y., Mannan J., Karbani G., Corry P., Levene M.I., Mueller R.F., Markham A.F., Lench N.J., Woods C.G. 1998. Primary autosomal recessive microcephaly (MCPH1) maps to chromosome 8p22-pter. Am. J. Hum. Genet. V. 63. P. 541.
  50. Jean F., Stuart A., Tarailo-Graovac M. 2020. Dissecting the genetic and etiological causes of primary microcephaly. Front. Neurol. V. 11. P. 570830.
  51. Jeffers L.J., Coull B.J., Stack S.J., Morrison C.G. 2008. Distinct BRCT domains in Mcph1/Brit1 mediate ionizing radiation-induced focus formation and centrosomal localization. Oncogene. V. 27. P. 139.
  52. Journiac N., Gilabert-Juan J., Cipriani S., Benit P., Liu X., Jacquier S., Faivre V., Delahaye-Duriez A., Csaba Z., Hourcade T., Melinte E., Lebon S., Violle-Poirsier C., Oury J.-F., Adle-Biassette H. et al. 2020. Cell Metabolic Alterations due to Mcph1 Mutation in Microcephaly. Cell Rep. V. 31.
  53. Ke Q., Li W., Lai X., Chen H., Huang L., Kang Z., Li K., Ren J., Lin X., Zheng H., Huang W., Ma Y., Xu D., Chen Z., Song X. et al. 2016. TALEN-based generation of a cynomolgus monkey disease model for human microcephaly. Cell Res. V. 26. P. 1048.
  54. Khan T.N., Khan K., Sadeghpour A., Reynolds H., Perilla Y., McDonald M.T., Gallentine W.B., Baig S.M., Davis E.E., Katsanis N., Allori A., Angrist M., Ashley P., Bidegain M., Boyd B. et al. 2019. Mutations in NCAPG2 cause a severe neurodevelopmental syndrome that expands the phenotypic spectrum of condensinopathies. Am. J. Hum. Genet. V. 104. P. 94.
  55. Kim H., Lee O.-H., Xin H., Chen L.-Y., Qin J., Chae H.K., Lin S.-Y., Safari A., Liu D., Songyang Z. 2009. TRF2 functions as a protein hub and regulates telomere maintenance by recognizing specific peptide motifs. Nat. Struct. Mol. Biol. V. 16. P. 372.
  56. Kocak H., Ballew B.J., Bisht K., Eggebeen R., Hicks B.D., Suman S., O’Neil A., Giri N., Maillard I., Alter B.P., Keegan C.E., Nandakumar J., Savage S.A. 2014. Hoyeraal-Hreidarsson syndrome caused by a germline mutation in the TEL patch of the telomere protein TPP1. Genes Dev. V. 28. P. 2090.
  57. Kristofova M., Ori A., Wang Z.-Q. 2022. Multifaceted microcephaly-related gene MCPH1. Cells. V. 11. P. 275.
  58. Kumar A., Markandaya M., Girimaji S.C. 2002. Primary microcephaly: microcephalin and ASPM determine the size of the human brain. J. Biosci. V. 27. P. 629.
  59. Lancaster M.A., Renner M., Martin C.-A., Wenzel D., Bicknell L.S., Hurles M.E., Homfray T., Penninger J.M., Jackson A.P., Knoblich J.A. 2013. Cerebral organoids model human brain development and microcephaly. Nature. V. 501. P. 373.
  60. Lange C., Turrero Garcia M., Decimo I., Bifari F., Eelen G., Quaegebeur A., Boon R., Zhao H., Boeckx B., Chang J., Wu C., Le Noble F., Lambrechts D., Dewerchin M., Kuo C.J. et al. 2016. Relief of hypoxia by angiogenesis promotes neural stem cell differentiation by targeting glycolysis. EMBO J. V. 35. P. 924.
  61. Lee Y., Brown E.J., Chang S., McKinnon P.J. 2014. Pot1a prevents telomere dysfunction and ATM-dependent neuronal loss. J. Neurosci. V. 34. P. 7836.
  62. Li R., Sun L., Fang A., Li P., Wu Q., Wang X. 2017. Recapitulating cortical development with organoid culture in vitro and modeling abnormal spindle-like (ASPM related primary) microcephaly disease. Protein Cell. V. 8. P. 823.
  63. Liang Y., Gao H., Lin S.-Y., Goss J.A., Du C., Li K. 2015. Mcph1/Brit1 deficiency promotes genomic instability and tumor formation in a mouse model. Oncogene. V. 34. P. 4368.
  64. Liang Y., Gao H., Lin S.-Y., Peng G., Huang X., Zhang P., Goss J.A., Brunicardi F.C., Multani A.S., Chang S., Li K. 2010. BRIT1/MCPH1 is essential for mitotic and meiotic recombination DNA repair and maintaining genomic stability in mice. PLoS Genet. V. 6: e1000826. https://doi.org/10.1371/journal.pgen.1000826
  65. Lin S.-Y., Elledge S.J. 2003. Multiple tumor suppressor pathways negatively regulate telomerase. Cell. V. 113. P. 881.
  66. Lin S.-Y., Liang Y., Li K. 2010. Multiple roles of BRIT1/MCPH1 in DNA damage response, DNA repair, and cancer suppression. Yonsei Med. J. V. 51. P. 295.
  67. Lin S.-Y., Rai R., Li K., Xu Z.-X., Elledge S.J. 2005. BRIT1/MCPH1 is a DNA damage responsive protein that regulates the Brca1–Chk1 pathway, implicating checkpoint dysfunction in microcephaly. Proc. Natl. Acad. Sci. V. 102. P. 15105.
  68. Liu X., Schneble-Löhnert N., Kristofova M., Qing X., Labisch J., Hofmann S., Ehrenberg S., Sannai M., Jörß T., Ori A., Godmann M., Wang Z.-Q. 2021. The N-terminal BRCT domain determines MCPH1 function in brain development and fertility. Cell Death Dis. V. 12. P. 143.
  69. Liu X., Zong W., Li T., Wang Y., Xu X., Zhou Z., Wang Z. 2017. The E3 ubiquitin ligase APC/CCdh1 degrades MCPH1 after MCPH1‐βTrCP2‐Cdc25A‐mediated mitotic entry to ensure neurogenesis. EMBO J. V. 36. P. 3666.
  70. Lobanova A., She R., Pieraut S., Clapp C., Maximov A., Denchi E.L. 2017. Different requirements of functional telomeres in neural stem cells and terminally differentiated neurons. Genes Dev. V. 31. P. 639.
  71. Ma J., Xiong L., Chang Y., Jing X., Huang W., Hu B., Shi X., Xu W., Wang Y., Li X. 2014. Novel mutations c.[5121_5122insAG]+[6859C> T] of the SPG11 gene associated with cerebellum hypometabolism in a Chinese case of hereditary spastic paraplegia with thin corpus callosum. Parkinsonism Relat. Disord. V. 20. P. 256–259.
  72. Mai L., Yi F., Gou X., Zhang J., Wang C., Liu G., Bu Y., Yuan C., Deng L., Song F. 2014. The overexpression of MCPH1 inhibits cell growth through regulating cell cycle-related proteins and activating cytochrome c-caspase 3 signaling in cervical cancer. Mol. Cell. Biochem. V. 392. P. 95.
  73. Manke I.A., Lowery D.M., Nguyen A., Yaffe M.B. 2003. BRCT repeats as phosphopeptide-binding modules involved in protein targeting. Science. V. 302. P. 636.
  74. Mantere T., Winqvist R., Kauppila S., Grip M., Jukkola-Vuorinen A., Tervasmäki A., Rapakko K., Pylkäs K. 2016. Targeted next-generation sequencing identifies a recurrent mutation in MCPH1 associating with hereditary breast cancer susceptibility. PLOS Genet. V. 12: e1005816. https://doi.org/10.1371/journal.pgen.1005816
  75. Marques P.T., Zulfiqar Ali Q., Selvarajah A., Faghfoury H., Wennberg R.A., Andrade D.M. 2021. Hyperammonemic encephalopathy associated with perampanel: case report and discussion. Can. J. Neurol. Sci. V. 48. P. 438.
  76. Martin C.-A., Murray J.E., Carroll P., Leitch A., Mackenzie K.J., Halachev M., Fetit A.E., Keith C., Bicknell L.S., Fluteau A., Gautier P., Hall E.A., Joss S., Soares G., Silva J. et al. 2016. Mutations in genes encoding condensin complex proteins cause microcephaly through decatenation failure at mitosis. Genes Dev. V. 30. P. 2158–2172.
  77. McGowen M.R., Montgomery S.H., Clark C., Gatesy J. 2011. Phylogeny and adaptive evolution of the brain-development gene microcephalin (MCPH1) in cetaceans. BMC Evol. Biol. V. 11. P. 98.
  78. McKinnon P.J. 2009. DNA repair deficiency and neurological disease. Nat. Rev. Neurosci. V. 10. P. 100.
  79. Mekel-Bobrov N., Posthuma D., Gilbert S.L., Lind P., Gosso M.F., Luciano M., Harris S.E., Bates T.C., Polderman T.J.C., Whalley L.J., Fox H., Starr J.M., Evans P.D., Montgomery G.W., Fernandes C. et al. 2007. The ongoing adaptive evolution of ASPM and microcephalin is not explained by increased intelligence. Hum. Mol. Genet. V. 16. P. 600.
  80. Méndez-Lucas A., Hyroššová P., Novellasdemunt L., Viñals F., Perales J.C. 2014. Mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-M) is a pro-survival, endoplasmic reticulum (ER) stress response gene involved in tumor cell adaptation to nutrient availability. J. Biol. Chem. V. 289. P. 22090.
  81. Meyer S.K., Dunn M., Vidier D.S., Porter A., Blain P.G., Jowsey P.A. 2019. Phosphorylation of MCPH1 isoforms during mitosis followed by isoform‐specific degradation by APC/C‐CDH1. FASEB J. V. 33. P. 2796.
  82. Mochida G.H., Walsh C.A. 2001. Molecular genetics of human microcephaly. Curr. Opin. Neurol. V. 14. P. 151.
  83. Montgomery S.H., Capellini I., Venditti C., Barton R.A., Mundy N.I. 2011. Adaptive evolution of four microcephaly genes and the evolution of brain size in anthropoid primates. Mol. Biol. Evol. V. 28. P. 625.
  84. Montgomery S.H., Mundy N.I. 2014. Microcephaly genes evolved adaptively throughout the evolution of eutherian mammals. BMC Evol. Biol. V. 14. P. 120.
  85. Naseer M.I., Rasool M., Abdulkareem A.A., Bassiouni R.I., Algahtani H., Chaudhary A.G., Al-Qahtani M.H. 2018. Novel compound heterozygous mutations in MCPH1 gene causes primary microcephaly in Saudi family. Neurosci. V. 23. P. 346.
  86. Neitzel H., Neumann L.M., Schindler D., Wirges A., Tönnies H., Trimborn M., Krebsova A., Richter R., Sperling K. 2002. Premature chromosome condensation in humans associated with microcephaly and mental retardation: a novel autosomal recessive condition. Am. J. Hum. Genet. V. 70. P. 1015.
  87. Nielsen R., Bustamante C., Clark A.G., Glanowski S., Sackton T.B., Hubisz M.J., Fledel-Alon A., Tanenbaum D.M., Civello D., White T.J., J. Sninsky J., Adams M.D., Cargill M. 2005. A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biol. V. 3: e170. https://doi.org/10.1371/journal.pbio.0030170
  88. Nigg E.A., Holland A.J. 2018. Once and only once: mechanisms of centriole duplication and their deregulation in disease. Nat. Rev. Mol. Cell Biol. V. 19. P. 297.
  89. Nishide K., Hirano T. 2014. Overlapping and non-overlapping functions of condensins I and II in neural stem cell divisions. PLoS Genet. V. 10: e1004847. https://doi.org/10.1371/journal.pgen.1004847
  90. Oluwole O.G. 2024. The analyses of human MCPH1 DNA repair machinery and genetic variations. Open Med. V. 19.
  91. Oluwole O.G., Esoh K.K., Wonkam-Tingang E., Manyisa N., Noubiap J.J., Chimusa E.R., Wonkam A. 2021. Whole exome sequencing identifies rare coding variants in novel human-mouse ortholog genes in African individuals diagnosed with non-syndromic hearing impairment. Exp. Biol. Med. V. 246. P. 197.
  92. Ozgen H., Van Daalen E., Bolton P., Maloney V., Huang S., Cresswell L., Van Den Boogaard M., Eleveld M., Van‘t Slot R., Hochstenbach R., Beemer F., Barrow M., Barber J., Poot M. 2009. Copy number changes of the microcephalin 1 gene ( MCPH1 ) in patients with autism spectrum disorders. Clin. Genet. V. 76. P. 348.
  93. Passemard S., El Ghouzzi V., Nasser H., Verney C., Vodjdani G., Lacaud A., Lebon S., Laburthe M., Robberecht P., Nardelli J., Mani S., Verloes A., Gressens P., Lelièvre V. 2011. VIP blockade leads to microcephaly in mice via disruption of Mcph1-Chk1 signaling. J. Clin. Invest. V. 121. P. 3072.
  94. Payer L.M., Steranka J.P., Ardeljan D., Walker J., Fitzgerald K.C., Calabresi P.A., Cooper T.A., Burns K.H. 2019. Alu insertion variants alter mRNA splicing. Nucleic Acids Res. V. 47. P. 421.
  95. Payer L.M., Steranka J.P., Kryatova M.S., Grillo G., Lupien M., Rocha P.P., Burns K.H. 2021. Alu insertion variants alter gene transcript levels. Genome Res. V. 31. P. 2236.
  96. Peng G., Yim E.-K., Dai H., Jackson A.P., Burgt I. van der, Pan M.-R., Hu R., Li K., Lin S.-Y. 2009. BRIT1/MCPH1 links chromatin remodelling to DNA damage response. Nat. Cell Biol. V. 11. P. 865.
  97. Perche O., Menuet A., Marcos M., Liu L., Pâris A., Utami K.H., Kervran D., Cacheux V., Laudier B., Briault S. 2013. Combined deletion of two condensin II system genes (NCAPG2 and MCPH1) in a case of severe microcephaly and mental deficiency. Eur. J. Med. Genet. V. 56. P. 635.
  98. Pfau R.B., Thrush D.L., Hamelberg E., Bartholomew D., Botes S., Pastore M., Tan C., del Gaudio D., Gastier-Foster J.M., Astbury C. 2013. MCPH1 deletion in a newborn with severe microcephaly and premature chromosome condensation. Eur. J. Med. Genet. V. 56. P. 609.
  99. Pierzak-Sominka J., Skonieczna-Żydecka K., Rudnicki J., Karakiewicz B. 2016. The Impact of rs3762271 and rs930557 Polymorphisms of ASPM and MCPH1 genes on the anatomy and function of the brain. Biol. Res. Nurs. V. 18. P. 386.
  100. Ponting C., Jackson A.P. 2005. Evolution of primary microcephaly genes and the enlargement of primate brains. Curr. Opin. Genet. Dev. V. 15. P. 241.
  101. Pulvers J.N. 2015. MCPH1: a window into brain development and evolution. Front. Cell. Neurosci. V. 9. P. 92.
  102. Rai R., Dai H., Multani A.S., Li K., Chin K., Gray J., Lahad J.P., Liang J., Mills G.B., Meric-Bernstam F., Lin S.-Y. 2006. BRIT1 regulates early DNA damage response, chromosomal integrity, and cancer. Cancer Cell. V. 10. P. 145.
  103. Rai R., Phadnis A., Haralkar S., Badwe R.A., Dai H., Li K., Lin S.-Y. 2008. Differential regulation of centrosome integrity by DNA damage response proteins. Cell Cycle. V. 7. P. 2225.
  104. Rauch A., Thiel C.T., Schindler D., Wick U., Crow Y.J., Ekici A.B., van Essen A.J., Goecke T.O., Al-Gazali L., Chrzanowska K.H., Zweier C., Brunner H.G., Becker K., Curry C.J., Dallapiccola B., et al. 2008. Mutations in the pericentrin ( PCNT ) gene cause primordial dwarfism. Science. V. 319. P. 816.
  105. Renkawitz J., Lademann C.A., Jentsch S. 2014. Mechanisms and principles of homology search during recombination. Nat. Rev. Mol. Cell Biol. V. 15. P. 369.
  106. Rowe R.G., Daley G.Q. 2019. Induced pluripotent stem cells in disease modelling and drug discovery. Nat. Rev. Genet. V. 20. P. 377.
  107. Rushton J.P., Vernon P.A., Bons T.A. 2007. No evidence that polymorphisms of brain regulator genes microcephalin and ASPM are associated with general mental ability, head circumference or altruism. Biol. Lett. V. 3. P. 157.
  108. Scala I., Titomanlio L., Del Giudice E., Passemard S., Figliuolo C., Annunziata P., Granese B., Scarpato E., Verloes A., Andria G. 2010. Absence of microcephalin gene mutations in a large cohort of non‐consanguineous patients with autosomal recessive primary microcephaly. Am. J. Med. Genet. Part A. V. 152A. P. 2882.
  109. Shen S., Lin L., Cai J.J., Jiang P., Kenkel E.J., Stroik M.R., Sato S., Davidson B.L., Xing Y. 2011. Widespread establishment and regulatory impact of Alu exons in human genes. Proc. Natl. Acad. Sci. V. 108. P. 2837.
  110. Sheth F., Andrieux J., Tewari S., Sheth H., Desai M., Kumari P., Nanavaty N., Sheth J. 2013. Chromosomal imbalance letter: Phenotypic consequences of combined deletion 8pter and pduplication 15qter. Mol. Cytogenet. V. 6. P. 24.
  111. Shi L., Li M., Lin Q., Qi X., Su B. 2013. Functional divergence of the brain-size regulating gene MCPH1during primate evolution and the origin of humans. BMC Biol. V. 11. P. 1.
  112. Shi L., Li M., Su B. 2012. MCPH1/BRIT1 represses transcription of the human telomerase reverse transcriptase gene. Gene. V. 495. P. 1.
  113. Shi L., Luo X., Jiang J., Chen Y., Liu C., Hu T., Li M., Lin Q., Li Y., Huang J., Wang H., Niu Y., Shi Y., Styner M., Wang J. et al. 2019. Transgenic rhesus monkeys carrying the human MCPH1 gene copies show human-like neoteny of brain development. Natl. Sci. Rev. V. 6. P. 480.
  114. Sun T., Hevner R.F. 2014. Growth and folding of the mammalian cerebral cortex: from molecules to malformations. Nat. Rev. Neurosci. V. 15. P. 217.
  115. Takahashi K., Yamanaka S. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. V. 126. P. 663.
  116. Taylor A.M.R., Rothblum-Oviatt C., Ellis N.A., Hickson I.D., Meyer S., Crawford T.O., Smogorzewska A., Pietrucha B., Weemaes C., Stewart G.S. 2019. Chromosome instability syndromes. Nat. Rev. Dis. Prim. V. 5. P. 64.
  117. Tibelius A., Marhold J., Zentgraf H., Heilig C.E., Neitzel H., Ducommun B., Rauch A., Ho A.D., Bartek J., Krämer A. 2009. Microcephalin and pericentrin regulate mitotic entry via centrosome-associated Chk1. J. Cell Biol. V. 185. P. 1149.
  118. Trimborn M., Bell S.M., Felix C., Rashid Y., Jafri H., Griffiths P.D., Neumann L.M., Krebs A., Reis A., Sperling K., Neitzel H., Jackson A.P. 2004. Mutations in microcephalin cause aberrant regulation of chromosome condensation. Am. J. Hum. Genet. V. 75. P. 261.
  119. Trimborn M., Ghani M., Walther D.J., Dopatka M., Dutrannoy V., Busche A., Meyer F., Nowak S., Nowak J., Zabel C., Klose J., Esquitino V., Garshasbi M., Kuss A.W., Ropers H.-H., et al. 2010. Establishment of a mouse model with misregulated chromosome condensation due to defective Mcph1 function. PLoS One. V. 5: e9242. https://doi.org/10. 1371/journal.pone.0009242
  120. Vincent E.E., Sergushichev A., Griss T., Gingras M.-C., Samborska B., Ntimbane T., Coelho P.P., Blagih J., Raissi T.C., Choinière L., Bridon G., Loginicheva E., Flynn B.R., Thomas E.C., Tavaré J.M. et al. 2015. Mitochondrial phosphoenolpyruvate carboxykinase regulates metabolic adaptation and enables glucose-independent tumor growth. Mol. Cell. V. 60. P. 195.
  121. Wang Y., Su B. 2004. Molecular evolution of microcephalin, a gene determining human brain size. Hum. Mol. Genet. V. 13. P. 1131.
  122. Wood J.L., Liang Y., Li K., Chen J. 2008. Microcephalin/MCPH1 associates with the condensin ii complex to function in homologous recombination repair. J. Biol. Chem. V. 283. P. 29586.
  123. Wood J.L., Singh N., Mer G., Chen J. 2007. MCPH1 functions in an H2AX-dependent but MDC1-independent pathway in response to DNA damage. J. Biol. Chem. V. 282. P. 35416.
  124. Woods C.G., Bond J., Enard W. 2005. Autosomal recessive primary microcephaly (MCPH): a review of clinical, molecular, and evolutionary findings. Am. J. Hum. Genet. V. 76. P. 717.
  125. Woods R.P., Freimer N.B., De Young J.A., Fears S.C., Sicotte N.L., Service S.K., Valentino D.J., Toga A.W., Mazziotta J.C. 2006. Normal variants of microcephalin and ASPM do not account for brain size variability. Hum. Mol. Genet. V. 15. P. 2025.
  126. Wu X., Mondal G., Wang X., Wu J., Yang L., Pankratz V.S., Rowley M., Couch F.J. 2009. Microcephalin regulates BRCA2 and Rad51-associated DNA double-strand break repair. Cancer Res. V. 69. P. 5531.
  127. Xu D., Zhang F., Wang Y., Sun Y., Xu Z. 2014. Microcephaly-asociated protein WDR62 regulates neurogenesis through JNK1 in the developing neocortex. Cell Rep. V. 6. P. 104.
  128. Xu X., Lee J., Stern D.F. 2004. Microcephalin is a DNA damage response protein involved in regulation of CHK1 and BRCA1. J. Biol. Chem. V. 279. P. 34091.
  129. Yamashita D., Shintomi K., Ono T., Gavvovidis I., Schindler D., Neitzel H., Trimborn M., Hirano T. 2011. MCPH1 regulates chromosome condensation and shaping as a composite modulator of condensin II. J. Cell Biol. V. 194. P. 841.
  130. Yang S., Lin F., Lin W. 2008. MCPH1/BRIT1 cooperates with E2F1 in the activation of checkpoint, DNA repair and apoptosis. EMBO Rep. V. 9. P. 907.
  131. Yen W.-F., Chaudhry A., Vaidyanathan B., Yewdell W.T., Pucella J.N., Sharma R., Liang Y., Li K., Rudensky A.Y., Chaudhuri J. 2017. BRCT-domain protein BRIT1 influences class switch recombination. Proc. Natl. Acad. Sci. V. 114. P. 8354.
  132. Yingling J., Youn Y.H., Darling D., Toyo-oka K., Pramparo T., Hirotsune S., Wynshaw-Boris A. 2008. Neuroepithelial stem cell proliferation requires LIS1 for precise spindle orientation and symmetric division. Cell. V. 132. P. 474.
  133. Yu X., Chini C.C.S., He M., Mer G., Chen J. 2003. The BRCT domain is a phospho-protein binding domain. Science. V. 302. P. 639.
  134. Zhang B., Wang E., Dai H., Shen J., Hsieh H.-J., Lu X., Peng G. 2014. Phosphorylation of the BRCA1 C terminus (BRCT) repeat inhibitor of hTERT (BRIT1) protein coordinates TopBP1 protein recruitment and amplifies ataxia telangiectasia-mutated and Rad3-related (ATR) signaling. J. Biol. Chem. V. 289. P. 34284.
  135. Zhang J., Wu X.-B., Fan J.-J., Mai L., Cai W., Li D., Yuan C.-F., Bu Y.-Q., Song F.-Z. 2013. MCPH1 Protein expression in normal and neoplastic lung tissues. Asian Pacific J. Cancer Prev. V. 14. P. 7295.
  136. Zhang P., Furukawa K., Opresko P.L., Xu X., Bohr V.A., Mattson M.P. 2006. TRF2 dysfunction elicits DNA damage responses associated with senescence in proliferating neural cells and differentiation of neurons. J. Neurochem. V. 97. P. 567.
  137. Zhang W., Yang S.-L., Yang M., Herrlinger S., Shao Q., Collar J.L., Fierro E., Shi Y., Liu A., Lu H., Herring B.E., Guo M.-L., Buch S., Zhao Z., Xu J. et al. 2019. Modeling microcephaly with cerebral organoids reveals a WDR62–CEP170–KIF2A pathway promoting cilium disassembly in neural progenitors. Nat. Commun. V. 10. P. 2612.
  138. Zhong X., Pfeifer G.P., Xu X. 2006. Microcephalin encodes a centrosomal protein. Cell Cycle. V. 5. P. 457.
  139. Zhou Z.-W., Tapias A., Bruhn C., Gruber R., Sukchev M., Wang Z.-Q. 2013. DNA damage response in microcephaly development of MCPH1 mouse model. DNA Repair (Amst). V. 12. P. 645.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Функции микроцефалина (MCPH1): 1) участвует в репарации ДНК посредством деконденсации хроматина (через комплекс SWI/SNF), привлечения факторов репарации (BRCA2 и RAD51), а также путем усиления сигнала амплификации ATR-сигнального пути за счет взаимодействия с TopBP1; 2) регулирует стабильность теломер и в случае их дисфункции привлекает факторы репарации ДНК, а также способствует разрешению репликационного стресса в теломерных районах; 3) в интерфазном ядре поддерживает трехмерную организацию хроматина путем ингибирования взаимодействие комплексов конденсина II с хроматином; контролирует клеточный цикл посредством регуляции Chk 1–Cdc 2 5b; 4) через взаимодействие с E 2F 1 активирует экспрессию белков, участвующих в репарации ДНК, контроле клеточного цикла и апоптоза; 5) репрессирует экспрессию hTERT. Красными крестами отмечены те взаимосвязи, которые оказываются нарушенным при деплеции MCPH1. Рисунок выполнен с помощью сервиса BioRender (https://biorender.com).

Скачать (439KB)
3. Рис. 2. Схематичное строение гена MCPH1 и расположение мутаций, описанных у пациентов с микроцефалией. Экзоны обозначены черными прямоугольниками; Δ – делеции экзонов. Мутации, выделенные красным, идентифицированы в базе данных проекта DECIPHER у пациентов, имеющих признаки микроцефалии и задержки роста. Рисунок выполнен с помощью сервиса BioRender (https://biorender.com).

Скачать (183KB)
4. Рис. 3. Схематическое расположение мутаций и их фенотипическое проявление в трансгенных мышах с мутациями Mcph1. Треугольники, расположенные в интронах фланкируют удаленные экзоны в трансгенных линиях мышей. Треугольники над интронами указывают место интеграции кассеты для создания делеций. Рисунок выполнен с помощью сервиса BioRender (https://biorender.com).

Скачать (223KB)
5. Рис. 4. MCPH1 поддерживает баланс между симметричным и асимметричным делением нейральных предшественников. Деплеция MCPH1 (Mcph1–/–) приводит к снижению центросомального пула Chk1 и активации Cdk1. Это в свою очередь вызывает преждевременный переход фаз клеточного цикла G2–M, когда созревание дочерней центросомы еще не завершено. В результате, в митозе центросомы имеют разный потенциал к организации микротрубочек, что является причиной асимметрии веретена деления. При симметричном делении происходит равномерное наследование белков и обе дочерние клетки сохраняют пролиферативный потенциал. Асимметричное деление приводит к неравному наследованию апикальных белков и дифференцировке клеток в нейроны. Адаптировано из: Gruber et al., 2011. Рисунок выполнен с помощью сервиса BioRender (https://biorender.com).

Скачать (310KB)

© Российская академия наук, 2024