Effect of gamma-irradiation of papain on physicochemical properties of its aqueous solutions

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The effect of γ-irradiation of papain with doses from 30 to 700 kGy on light absorption in the UV and visible regions, isoelectric state, viscosity, surface tension and electrical conductivity of its aqueous solutions has been studied. It is shown that the increase of irradiation dose of papain on the one hand is accompanied by the increase of absorption in the UV and visible regions, as well as by the increase of electrical conductivity, on the other hand, the increase of irradiation dose of papain is accompanied by the decrease of viscosity and surface tension of its solutions. The main reasons for such changes are the destruction of peptide bonds in papain during radiolysis and reduction of its molecular weight, radiation-induced oxidation of amino acid residues and formation of carbonyl derivatives, as well as the formation and accumulation in papain macromolecules of various terminal primary amino groups carrying a positive charge.

作者简介

A. Gataullin

Kazan National Research Technological University

Email: sadush@icp.ac.ru
Kazan, 420015 Russia

S. Bogdanova

Kazan National Research Technological University

Email: sadush@icp.ac.ru
Kazan, 420015 Russia

A. Shevyakova

Kazan National Research Technological University

Email: sadush@icp.ac.ru
Kazan, 420015 Russia

S. Demidov

Federal Research Center for Problems of Chemical Physics and Medical Chemistry of the Russian Academy of Sciences

Chernogolovka, 142432 Russia

S. Allayarov

Federal Research Center for Problems of Chemical Physics and Medical Chemistry of the Russian Academy of Sciences

Email: sadush@icp.ac.ru
Chernogolovka, 142432 Russia

参考

  1. Novinec M., Lenarcic B. // BioMolecular Concepts. 2013. V. 4. № 3. P. 287–308. https://doi.org/10.1515/bmc-2012-0054
  2. Abu-Alruz K., Mazahreh A. S., Quasem J. M., Hejazin R. K., El-Qudah J.M. // American Journal of Agricultural and Biological Sciences. 2009. V. 4. № 3. P. 173–178. https://doi.org/10.3844/ajabssp.2009.173.178
  3. Amri E., Mamboya F. // American Journal of Biochemistry and Biotechnology. 2012. V. 8. № 2. P. 99–104. https://doi.org/10.3844/ajbbsp.2012.99.104
  4. Piva E., Ogliari F. A., de Moraes R. R., Cora F., Henn S., Correr-Sobrinho L. // Brazilian oral research. 2008. V. 22. №4. P. 364–370. https://doi.org/10.1590/S1806-83242008000400014
  5. Lopes M. C., Mascarini R. C., da Silva B. M.C.G., Florio F. M., Basting R. T. // Journal of Dentistry for Children. 2007. V. 74. № 2. P. 93–97.
  6. Sim Y.-C., Lee S.-G., Lee D.-C. Kang B.-Y., Park K.-M., Lee J.-Y., Kim M.-S., Chang I.-S., Rhee J.-S. // Biotechnology Letters. 2000. V. 22. P. 137–140. https://doi.org/10.1023/A:1005670323912
  7. Traversa E., Machado-Santelli G.M., Velasco M. V.R. // International Journal of Pharmaceutics. 2007. V. 335. № 1–2. P. 163–166. https://doi.org/10.1016/j.ijpharm.2007.01.020
  8. Beeley J. A., Yip H. K., Stevenson A. G. // British Dental Journal. 2000. V. 188. № 8. P. 427–430. https://doi.org/10.1038/sj.bdj.4800501
  9. Shouket H. A., Ameen I., Tursunov O., Kholikova Kh., Pirimov O., Kurbonov N., Ibragimov I., Mukimov B. // IOP Conference Series: Earth and Environmental Science. 2020. V. 614. P. 012171. https://doi.org/10.1088/1755-1315/614/1/012171
  10. Singh D., Singh R. // Radiation Physics and Chemistry. 2012. V. 81. № 11. P. 1781–1785. https://doi.org/10.1016/j.radphyschem.2012.06.010
  11. Varca G. H.C., Ferraz C. C., Lopes P. S., Mathor M. B., Grasselli M., Lugão A. B. // Radiation Physics and Chemistry. 2014. V. 94. P. 181–185. https://doi.org/10.1016/j.radphyschem.2013.05.057
  12. Varca G. H.C., Perossi G. G., Graselli M., Lugao A. B. // Radiation Physics and Chemistry. 2014. V. 105. P. 48–52. https://doi.org/10.1016/j.radphyschem.2014.05.020
  13. Allayarova U. Yu., Demidov S. V., Blokhina S. V., Raevskaya T. A., Mishchenco D. V., Omel’chuk Yu. A., Allayarov S. R. // High Energy Chemistry. 2024. V. 58. № 5. P. 568–574. https://doi.org/10.1134/S0018143924700395
  14. Berezovskaya I. V. // Pharmaceutical Chemistry Journal. 2003. V. 37. № 3. P. 139–141. https://doi.org/10.1023/A:1024586630954
  15. Varca G. H.C., Kadlubowski S., Wolszczak M., Lugao A. B. Rosiak J. M., Ulanski P. // International Journal of Biological Macromolecules. 2016. V. 92. P. 654–659. https://doi.org/10.1016/j.ijbiomac.2016.07.070
  16. Allayarov S. R., Rudneva T. N., Demidov S. V., Allayarova U. Yu., Chekalina S. D. // High Energy Chemistry. 2024. V. 58. № 5. P. 561–567. https://doi.org/10.1134/S0018143924700383
  17. Wang G., Chen Y., Yan C., Lu Y. // Journal of Luminescence. 2015. V. 157. P. 229–234. https://doi.org/10.1016/j.jlumin.2014.09.002
  18. Fruton J. S., Lavin G. I. // Journal of Biological Chemistry. 1939. V. 130. № 1. P. 375–381. https://doi.org/10.1016/S0021-9258 (18)73588-6
  19. Darby H. H. // Journal of Biological Chemistry. 1941. V. 139. № 2. P. 721–725. https://doi.org/10.1016/S0021-9258(18)72944-X
  20. Donde R. B., Korgaonkar K. S. // International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine. 1962. V. 4. № 3. P. 285–297. https://doi.org/10.1080/09553006214550071
  21. Korgaonkar K. S., Donde R. B. // International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine. 1962. V. 5. № 1. P. 67–77. https://doi.org/10.1080/09553006214550561
  22. Timofeev-Resovskii N.V., Savich A. V., Shal’nov M. I. Introduction to molecular radiobiology: physicochemical basics. Moscow: Meditsina. 1981. 320 p.
  23. Clement J. R., Lin W. S., Armstrong D. A. // Radiation Research. 1977. V. 72. № 3. P. 427–439. https://doi.org/10.2307/3574608
  24. Myers L. S., Abernethy J. L. // Radiation Research. 1964. V. 22. № 2. P. 334–344. https://doi.org/10.2307/3571663
  25. Klychkhanov N. K., Ismailova J. G., Astaeva M. D. Free radical processes in biological systems: study guide. Makhachkala: DSU. 2012. 188 p. https://eor.dgu.ru/lectures_f/Учебное%20пособие%20Свободнорадикальные%20процесссы/СРП%20в%20биологических%20системах%202012%20Учебное%20пособие.htm
  26. Mosolov V. V. Proteolytic enzymes. Moscow: Nauka. 1971. 414 p.
  27. Fazolin G. N., Varca G. H.C., Kadlubowski S., Sowinski S., Lugao A. B. // Radiation Physics and Chemistry. 2020. V. 169. P. 107984. https://doi.org/10.1016/j.radphyschem.2018.08.033
  28. Ma C.-Y., Sahasrabudhe M.R., Poste L.M., Harwalkar V.R., Chambers J.R., O’Hara K.P.J. // Canadian Institute of Food Science and Technology Journal. 1990. V. 23. № 4–5. P. 226–232. https://doi.org/10.1016/S0315-5463(90)70248-9
  29. Song H.-P., Kim B., Choe J.-H., Jung S., Kim K.-S., Kim D.-H., Jo C. // Radiation Physics and Chemistry. 2009. V. 78. № 3. P. 217–221. https://doi.org/10.1016/j.radphyschem.2008. 10.001
  30. Antipkin N. R., Bogorodskaya M. A. // Uspekhi v chemii i khimicheskoy tekhnologii. 2011. V. 25. № 6. P. 99–104; https://cyberleninka.ru/article/n/o-vliyanii-gamma-oblucheniya-na-svoystva-zhelatina/viewer
  31. Davies M. J. // Biochemical Journal. 2016. V. 473. № 7. P. 805–825. https://doi.org/10.1042/BJ20151227

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025